WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression «A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves.» –The Statistician «Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher.» –Mathematical Reviews
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers.» –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.
This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics
An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and finance professionals with a foundation in nonparametric function estimation and the underlying mathematics. Combining practical applications, mathematically rigorous presentation, and statistical data analysis into a single volume, this book presents detailed instruction in discrete chapters that allow readers to dip in as needed without reading from beginning to end. Coverage includes statistical finance, risk management, portfolio management, and securities pricing to provide a practical knowledge base, and the introductory chapter introduces basic finance concepts for readers with a strictly mathematical background. Economic significance is emphasized over statistical significance throughout, and R code is provided to help readers reproduce the research, computations, and figures being discussed. Strong graphical content clarifies the methods and demonstrates essential visualization techniques, while deep mathematical and statistical insight backs up practical applications. Written for the leading edge of finance, Nonparametric Finance: • Introduces basic statistical finance concepts, including univariate and multivariate data analysis, time series analysis, and prediction • Provides risk management guidance through volatility prediction, quantiles, and value-at-risk • Examines portfolio theory, performance measurement, Markowitz portfolios, dynamic portfolio selection, and more • Discusses fundamental theorems of asset pricing, Black-Scholes pricing and hedging, quadratic pricing and hedging, option portfolios, interest rate derivatives, and other asset pricing principles • Provides supplementary R code and numerous graphics to reinforce complex content Nonparametric function estimation has received little attention in the context of risk management and option pricing, despite its useful applications and benefits. This book provides the essential background and practical knowledge needed to take full advantage of these little-used methods, and turn them into real-world advantage. Jussi Klemelä, PhD, is Adjunct Professor at the University of Oulu. His research interests include nonparametric function estimation, density estimation, and data visualization. He is the author of Smoothing of Multivariate Data: Density Estimation and Visualization and Multivariate Nonparametric Regression and Visualization: With R and Applications to Finance.
Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics.
Praise for the First Edition: «The book makes a valuable contribution by synthesizing current research and identifying areas for future investigation for each aspect of the survey process.» —Journal of the American Statistical Association «Overall, the high quality of the text material is matched by the quality of writing . . .» —Public Opinion Quarterly «. . . it should find an audience everywhere surveys are being conducted.» —Technometrics This new edition of Survey Methodology continues to provide a state-of-the-science presentation of essential survey methodology topics and techniques. The volume's six world-renowned authors have updated this Second Edition to present newly emerging approaches to survey research and provide more comprehensive coverage of the major considerations in designing and conducting a sample survey. Key topics in survey methodology are clearly explained in the book's chapters, with coverage including sampling frame evaluation, sample design, development of questionnaires, evaluation of questions, alternative modes of data collection, interviewing, nonresponse, post-collection processing of survey data, and practices for maintaining scientific integrity. Acknowledging the growing advances in research and technology, the Second Edition features: Updated explanations of sampling frame issues for mobile telephone and web surveys New scientific insight on the relationship between nonresponse rates and nonresponse errors Restructured discussion of ethical issues in survey research, emphasizing the growing research results on privacy, informed consent, and confidentiality issues The latest research findings on effective questionnaire development techniques The addition of 50% more exercises at the end of each chapter, illustrating basic principles of survey design An expanded FAQ chapter that addresses the concerns that accompany newly established methods Providing valuable and informative perspectives on the most modern methods in the field, Survey Methodology, Second Edition is an ideal book for survey research courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing survey methodologists and any professional who employs survey research methods.
This 1971 classic on linear models is once again available–as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
The only comprehensive guide to the theory and practice of one of today's most important probabilistic techniques The past 15 years have witnessed many significant advances in sequential estimation, especially in the areas of three-stage and nonparametric methodology. Yet, until now, there were no references devoted exclusively to this rapidly growing statistical field. Sequential Estimation is the first, single-source guide to the theory and practice of both classical and modern sequential estimation techniques–including parametric and nonparametric methods. Researchers in sequential analysis will appreciate the unified, logically integrated treatment of the subject, as well as coverage of important contemporary procedures not covered in more general sequential analysis texts, such as: * Shrinkage estimation * Empirical and hierarchical Bayes procedures * Multistage sampling and accelerated sampling procedures * Time-sequential estimation * Sequential estimation in finite population sampling * Reliability estimation and capture-recapture methodologies leading to sequential tagging schemes An indispensable resource for researchers in sequential analysis, Sequential Estimation is an ideal graduate-level text as well.
A visually intuitive approach to statistical data analysis Visual Statistics brings the most complex and advanced statistical methods within reach of those with little statistical training by using animated graphics of the data. Using ViSta: The Visual Statistics System-developed by Forrest Young and Pedro Valero-Mora and available free of charge on the Internet-students can easily create fully interactive visualizations from relevant mathematical statistics, promoting perceptual and cognitive understanding of the data's story. An emphasis is placed on a paradigm for understanding data that is visual, intuitive, geometric, and active, rather than one that relies on convoluted logic, heavy mathematics, systems of algebraic equations, or passive acceptance of results. A companion Web site complements the book by further demonstrating the concept of creating interactive and dynamic graphics. The book provides users with the opportunity to view the graphics in a dynamic way by illustrating how to analyze statistical data and explore the concepts of visual statistics. Visual Statistics addresses and features the following topics: * Why use dynamic graphics? * A history of statistical graphics * Visual statistics and the graphical user interface * Visual statistics and the scientific method * Character-based statistical interface objects * Graphics-based statistical interfaces * Visualization for exploring univariate data This is an excellent textbook for undergraduate courses in data analysis and regression, for students majoring or minoring in statistics, mathematics, science, engineering, and computer science, as well as for graduate-level courses in mathematics. The book is also ideal as a reference/self-study guide for engineers, scientists, and mathematicians. With contributions by highly regarded professionals in the field, Visual Statistics not only improves a student's understanding of statistics, but also builds confidence to overcome problems that may have previously been intimidating.
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «This is a nice book containing a wealth of information, much of it due to the authors. . . . If an instructor designing such a course wanted a textbook, this book would be the best choice available. . . . There are many stimulating exercises, and the book also contains an excellent index and an extensive list of references.» —Technometrics «[This] book should be read carefully by anyone who is interested in dealing with statistical models in a realistic fashion.» —American Scientist Introducing concepts, theory, and applications, Robust Statistics is accessible to a broad audience, avoiding allusions to high-powered mathematics while emphasizing ideas, heuristics, and background. The text covers the approach based on the influence function (the effect of an outlier on an estimater, for example) and related notions such as the breakdown point. It also treats the change-of-variance function, fundamental concepts and results in the framework of estimation of a single parameter, and applications to estimation of covariance matrices and regression parameters.