This volume is a compilation of papers presented in the Mechanical Behavior and Performance of Ceramics & Composites symposium during the 34th International Conference & Exposition on Advanced Ceramics and Composites (ICACC) held January 24-29, 2010, in Daytona Beach, Florida. The Mechanical Behavior and Performance of Ceramics & Composites symposium was one of the largest symposia in terms of the number (>100) of presentations at the ICACC’10. This symposium covered wide ranging and cutting-edge topics on mechanical properties and reliability of ceramics and composites and their correlations to processing, microstructure, and environmental effects. Symposium topics included: • Ceramics and composites for engine applications • Design and life prediction methodologies • Environmental effects on mechanical properties • Mechanical behavior of porous ceramics • Ultra high temperature ceramics • Ternary compounds • Mechanics & characterization of nanomaterials and devices • Novel test methods and equipment • Processing – microstructure – mechanical properties correlations • Ceramics & composites joining and testing • NDE of ceramic components
This issue contains the proceedings of the “Porous Ceramics: Novel Developments and Applications” and “Next Generation Bioceramics” symposia, which were held on January 24-29, 2010 at the Hilton Daytona Beach Resort and the Ocean Center in Daytona Beach, Florida, USA. The interaction between ceramic materials and living organisms is a leading area of ceramics research. Novel bioceramic materials are being developed that will provide improvements in diagnosis and treatment of medical and dental conditions. In addition, bioinspired ceramics and biomimetic ceramics have generated considerable interest in the scientific community. The “Next Generation Bioceramics” symposium addressed several leading areas related to the development and use of novel bioceramics, including advanced processing of bioceramics; biomineralization and tissue-material interactions; bioinspired and biomimetic ceramics; ceramics for drug delivery; ceramic biosensors; in vitro and in vivo characterization of bioceramics; mechanical properties of bioceramics; and nanostructured bioceramics. The “Porous Ceramics” symposium aimed to bring together engineers and scientists in the area of ceramic materials containing high volume fractions of porosity, in which the porosity ranged from nano- to millimeters. These materials have attracted significant academic and industrial attention for use in environmental applications, an area where ceramics, particularly porous ones, play a key role because of their suitable properties. Therefore, a significant number of contributions, of which some are present in this volume, was devoted to the fabrication and characterization of porous ceramics for gas purification (e.g., H2 separation and CO2 separation) as well as to particulate filtration (e.g., diesel engine soot). A leading area of ceramics research involves the development of porous ceramics for medical, dental, and biotechnology applications. For example, porous ceramics are under development for use as bone substitutes because a porous structure may enhance tissue ingrowth. Therefore, tailoring of porosity to give specific characteristics, in terms of the amount of interconnecting cells and of the cell and cell window size is required. A joint session involving participants from bioceramics and porous ceramics symposia was therefore held in order to stimulate discussion and productive interactions between the two scientific communities.
The symposia Advances in Electroceramics and Microwave Materials and Their Applications were held during the 8th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM 8) from May 31-June 5, 2009 in Vancouver, Canada. This issue contains 17 peer-reviewed papers (invited and contributed) from these two symposia. The book is logically organized and carefully selected articles give insight into multifunctional materials and systems and incorporates the latest developments related to multifunctional materials and systems including electroceramics and microwave materials.
With continued discoveries and innovations, the field of materials synthesis and processing remains as it has been for many decades, a vibrant and fertile area for research and development. It comes, therefore, as no surprise that every Pac Rim conference has had considerable emphasis on this topic with many symposia devoted to various aspects of this field. This Ceramic Transactions volume represents selected papers based on presentations in four symposia during the 8th Pacific Rim Conference on Ceramic and Glass Technology, held in Vancouver, British Columbia, May 31-June 5, 2009.
This volume contains twenty four papers with contributions on various aspects of solid oxide fuel cells that were discussed at the symposium. You will gain insight into the current status of solid oxide fuel cells technology and the latest developments in the areas of fabrication, characterization, testing, performance, electrodes, electrolytes, seals, cell and stack development, proton conductors, fuel reforming, mechanical behavior, powder synthesis, etc.
Gain insight into the mechanical properties and performance of engineering ceramics and composites. This collection of articles illustrates the Mechanical Behavior and Performance of Ceramics & Composites symposium, which included over 100 presentations representing 10 countries. The symposium addressed the cutting-edge topics on mechanical properties and reliability of ceramics and composites and their correlations to processing, microstructure, and environmental effects.
A collection of articles from the Advances in Biomedical and Biomimetic Materials symposium give insight into advances in biomedical and biomimetic materials. These selected articles cover such topics as scaffolds for tissue engineering, bioceramics, biomimetic materials, nanoparticles for medical diagnosis and treatment, and novel materials for drug delivery and biosensing.
This volume provides a one-stop resource, compiling current research on bioceramics and porous ceramics. It is a collection of papers from The American Ceramic Society s 32nd International Conference on Advanced Ceramics and Composites, January 27-February 1, 2008. It includes papers from two symposia: «Porous Ceramics: Novel Developments and Applications» and «Next Generation Bioceramics.» Articles are logically organized to provide insight into various aspects of bioceramics and porous ceramics. This is a valuable, up-to-date resource for researchers working in ceramics engineering.
This book provides an excellent reference to the MIMO radio channel In this book, the authors introduce the concept of the Multiple Input Multiple Output (MIMO) radio channel, which is an intelligent communication method based upon using multiple antennas. Moreover, the authors provide a summary of the current channel modeling approaches used by industry, academia, and standardisation bodies. Furthermore, the book is structured to allow the reader to easily progress through the chapters in order to gain an understanding of the fundamental and mathematical principles behind MIMO. It also provides examples (i.e. Kroenecker model, Weicheselberger model, geometric and deterministic models, and ray tracing), system scenarios, trade-offs, and visual explanations. The authors explain and demonstrate the use and application of these models at system level. Key Features: Provides a summary of the current channel modeling approaches used by industry, academia and standardisation bodies Contains experimental and measurement based results Provides a comprehensive down to earth approach with concise and visual explanations of MIMO Radio Channel Covers a variety of system scenarios and explains the trade-offs involved in each Accompanying website containing MATLAB code and solutions to related problems http://www.tim.brown76.name/MIMObook) Practical Guide to the MIMO Radio Channel with MATLAB examples is an invaluable reference for R&D engineers and professionals in industry requiring familiarisation with the concept, and engineers entering the field or working in related fields seeking an introduction to the topic. Postgraduate and graduate students will also find this book of interest.
These are turbulent times in the world of book publishing. For nearly five centuries the methods and practices of book publishing remained largely unchanged, but at the dawn of the twenty-first century the industry finds itself faced with perhaps the greatest challenges since Gutenberg. A combination of economic pressures and technological change is forcing publishers to alter their practices and think hard about the future of the books in the digital age. In this book – the first major study of trade publishing for more than 30 years – Thompson situates the current challenges facing the industry in an historical context, analysing the transformation of trade publishing in the United States and Britain since the 1960s. He gives a detailed account of how the world of trade publishing really works, dissecting the roles of publishers, agents and booksellers and showing how their practices are shaped by a field that has a distinctive structure and dynamic. This new paperback edition has been thoroughly revised and updated to take account of the most recent developments, including the dramatic increase in ebook sales and its implications for the publishing industry and its future.