This new, expanded and updated edition of the user-friendly and comprehensive treatise on enzyme kinetics expertly balances theory and practice. This is an indispensable aid for advanced students and professionals working with enzymes, whether biochemists, biotechnologists, chemical biologists, pharmacologists or bioengineers in academia, industry and clinical research.
Protein phosphorylation is a key mechanism in cellular signaling. This volume presents a state-of-the-art survey of one of the most rapidly developing fields of biochemical research. Written by leading experts, it presents the latest results for some of the most important cellular pathways. Color plates illustrate structural or functional relationships, numerous references provide links to the original literature.
Edited by one of the leading experts in the field, this book fills the need for a book presenting the most important methods for high-throughput screenings and functional characterization of enzymes. It adopts an interdisciplinary approach, making it indispensable for all those involved in this expanding field, and reflects the major advances made over the past few years. For biochemists, analytical, organic and catalytic chemists, and biotechnologists.
Exploiting the inherent combinatorial mechanism in the biosynthesis of antibodies, an almost limitless variety of biocatalysts may be generated. Catalytic antibodies are capable of performing almost any type of reaction with high selectivity and stereospecificity. Here, the pioneers in the use of catalytic antibodies review the entire scope of this interdisciplinary field, covering such topics as: * theoretical aspects of structure, mechanism and kinetics * practical considerations, from immunization techniques to screening methods * in vitro evolution and other modern approaches * applications from organic synthesis to medical uses. Backed by the leading authorities in antibody catalysis, this is the first book to provide such comprehensive coverage and constitutes a prime reference for biochemists, organic chemists, biotechnologists and biomedical researchers.
This book provides an up-to-date summary of the principles of protein evolution and discusses both the methods available to analyze the evolutionary history of proteins as well as those for predicting their structure-function relationships. Includes a significantly expanded chapter on genome evolution to cover genomes of model organisms sequenced since the completion of the first edition, and organelle genome evolution Retains its reader-friendly, accessible style and organization Contains an updated glossary and new references, including a list of online reference sites
Biophysical Chemistry is an outstanding book that delivers both fundamental and complex biophysical principles, along with an excellent overview of the current biophysical research areas, in a manner that makes it accessible for mathematically and non-mathematically inclined readers. (Journal of Chemical Biology, February 2009) This text presents physical chemistry through the use of biological and biochemical topics, examples and applications to biochemistry. It lays out the necessary calculus in a step by step fashion for students who are less mathematically inclined, leading them through fundamental concepts, such as a quantum mechanical description of the hydrogen atom rather than simply stating outcomes. Techniques are presented with an emphasis on learning by analyzing real data. Presents physical chemistry through the use of biological and biochemical topics, examples and applications to biochemistry Lays out the necessary calculus in a step by step fashion for students who are less mathematically inclined Presents techniques with an emphasis on learning by analyzing real data Features qualitative and quantitative problems at the end of each chapter All art available for download online and on CD-ROM
Functional Metabolism of Cells is the first comprehensive survey of metabolism, offering an in-depth examination of metabolism and regulation of carbohydrates, lipids, and amino acids. It provides a basic background on metabolic regulation and adaptation as well as the chemical logic of metabolism, and covers the interrelationship of metabolism to life processes of the whole organism. The book lays out a structured approach to the metabolic basis of disease, including discussion of the normal pathways of metabolism, altered pathways leading to disease, and use of molecular genetics in diagnosis and treatment of disease. It also takes a unique comparative approach in which human metabolism is a reference for metabolism in microorganisms and plant design, and presents novel coverage of development and aging, and human health and animal adaptation. The final chapter reviews the past and future promise of new genetic approaches to treatment and bioinformatics. This, the most exhaustive treatment of metabolism currently available, is a useful text for advanced undergraduates and graduates in biochemistry, cell/molecular biology, and biomedicine, as well as biochemistry instructors and investigators in related fields.
Bioinorganic chemical knowledge grows more interesting and more complex with each passing year. As more details about the usage and utility of metals in biological species and more mechanistic and structural information about bioinorganic molecules becomes available, scientists and students continue to turn their attention to this blossoming discipline. Rosette Roat-Malone's Bioinorganic Chemistry: A Short Course provides an accessible survey of bioinorganic chemistry for advanced undergraduate and graduate students. Comprehensive coverage of several topics offers insight into the increasingly diverse bioinorganic area. Roat-Malone's text concentrates on bioinorganic chemistry's two major focuses: naturally occurring inorganic elements and their behavior in biological systems, and the introduction of inorganic elements into biological systems, often as medicines. The book begins with two review chapters, Inorganic Chemistry Essentials and Biochemistry Fundamentals. Chapter 3, Instrumental and Computer-Based Methods, provides an introduction to some important instrumental techniques, including basic information about computer hardware and software. Chapters on specific topics include: Iron Containing Oxygen Carriers and Their Synthetic Models Copper Enzymes The Enzyme Nitrogenase Metals in Medicine The author also encourages instructors and students to pursue their own independent investigations in bioinorganic topics, providing a helpful, detailed list of suggestions. With a host of current bibliographic references, Bioinorganic Chemistry: A Short Course proves the premier text in its field.
Practical Enzyme Kinetics provides a practical how-to guide for beginning students, technicians, and non-specialists for evaluating enzyme kinetics using common software packages to perform easy enzymatic analyses.
A must-have far-reaching text that provides readers with a state-of-the-art molecule update on transmembrane transporters, focusing on the methodological approaches currently employed to better understand how transporters work and how they can be used in cutting edge therapies. Each chapter begins with an overview of the importnat biological questions presently being considered in their field, then presents scientific approaches to address these questions. In explaining approaches, the authors cover bench-top protocols, conceptual frameworks, data obtained, and pitfalls common to the techniques.