Supercharge, Invasion, and Mudcake Growth in Downhole Applications. Группа авторов

Читать онлайн.
Название Supercharge, Invasion, and Mudcake Growth in Downhole Applications
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119283386



Скачать книгу

2Figure 2.1. Early COSL single and dual probe formation testers (where “dual” ref...Figure 2.2. Single probe formation tester (courtesy, COSL).Figure 2.3. Dual probe formation tester (courtesy, COSL).Figure 2.4. Piston pad pressed against the sandface.Figure 2.5a. Idealized spherical flow for isotropic formations, ellipsoidal flow...Figure 2.5b. Axisymmetric “ring” source.Figure 2.6. Ellipsoidal anisotropic flow, skin layer, three-dimensional finite e...Figure 2.7. “Near-Wellbore, Finite-Element Simulator (NEWS™)” from Halliburton E...Figure 2.8. Dual probe, pretest, simulation-pressure contours, 100 md isotropic ...Figure 2.9. Pressure contours for the first drawdown with two probes and the sec...Figure 2.10a. Forward simulation assumptions.Figure 2.10b. Pumpout schedule, volume flow rate.Figure 2.10c. Source probe pressure.Figure 2.10d. Observation probe pressure.Figure 2.11a. Source (bottom) and observation probe (top) pressure responses.Figure 2.11b. Inverse steady-state solver.Figure 2.12a. Constant rate pumping example.Figure 2.12b. Source probe response (all runs).Figure 2.12c. Observation probe response versus dip angle.Figure 2.13a. kh = 10 md, kv = 1 md (that is, kh > kv).Figure 2.13b. kh = kv = 4.642 md (that is, isotropic).Figure 2.13c. kh = 1 md, kv = 100.0 md (that is, kh < kv).Figure 2.14a. Three-dimensional computational mesh.Figure 2.14b. Borehole orientation.Figure 2.14c. Azimuthal pressure response in layered media.Figure 2.15a. Layered anisotropic media with dipping tool.Figure 2.15b. Pressure transient response, amplitude and phase contrasts clear (...Figure 2.15c. Multiple receiver phase delay formation tester (see, Section 2.3.5...Figure 2.15d. Transmitter-receiver, receiver-receiver operational modes (see, Se...Figure 2.16a. Nomenclature for pressure transient analysis.Figure 2.16b. Exact FT-00 forward simulation results from single pre-test (note ...Figure 2.16c. Predicted pore pressure and mobility (lower right).Figure 2.16d. Exact FT-00 forward simulation pressures for two sequential pre-te...Figure 2.16e. Predictions (first pre-test).Figure 2.16f. Predictions (second pre-test).Figure 2.17a. FT-06 liquid-gas simulator inputs.Figure 2.17b. FT-06 pump rate and pressure solutions.Figure 2.18. Repeat formation tester (RFT™).Figure 2.19a. Test procedure from Schlumberger U.S. Patent 5,279,153 (flat press...Figure 2.19b. New method for multiple drawdowns (refer to lower transient curves...Figure 2.20a. Schlumberger mobility parameters assumed.Figure 2.20b. Pressure response inferred from steady Schlumberger.Figure 2.21a. Flowline volume, 200 cc.Figure 2.21b. Flowline volume, 500 cc.Figure 2.21c. Flowline volume, 1,000 cc.Figure 2.21d. Flowline volume, 2,000 cc.Figure 2.22a. Time-dependent flowline volume.Figure 2.22b. Volume flow rate, flowline volume, source probe pressure plots.Figure 2.23. Simple “two-receiver” observation probe.Figure 2.24. Transmitter “marker” defines instant of departure.Figure 2.25a. Estimating time delays for given parameters.Figure 2.25b. Predicting permeability from time delay.Figure 2.26. Amplitude (left) and phase delay (right) versus r and ω.Figure 2.27a. Constant frequency pump excitation.Figure 2.27b. Input data and exploded view.Figure 2.27c. Source and observation probe pressure.Figure 2.28a. Square wave assumptions and pressure responses.Figure 2.28b. Pressure responses, exploded view.Figure 2.29a. Layered anisotropic medium with dipping tool.Figure 2.29b. Discretized grid for finite difference solution.Figure 2.30. Windows-based program interface.Figure 2.31. Rotatable plot of √(Pr 2 + P i 2) versus x and y for given layer (“...Figure 2.32. Phase delay plot (-100 to +100 psi for source pressure).Figure 2.33. Output text summaries.Figure 2.34a. Very high 1,000 md run.Figure 2.34b. High 100 md run.Figure 2.34c. Moderate 10 md run.Figure 2.34d. Low 1 md run.Figure 2.35a. Isotropic run, high permeability middle layer.Figure 2.35b. Isotropic run, low permeability middle layer.Figure 2.35c. Anisotropic run, high permeability middle layer.Figure 2.35d. Anisotropic run, low permeability middle layer.Figure 2.36a. Vertical tool (0° dip) in layered anisotropic medium.Figure 2.36b. Horizontal tool (90° dip) in layered anisotropic medium.Figure 2.36c. Deviated tool (45° dip) in layered anisotropic medium.Figure 2.37a. Isotropic three-layer system.Figure 2.37b. Dual probe system entirely in top layer.Figure 2.37c. Source in middle layer, observation probe outside.Figure 2.37d. Dual probe system entirely in middle layer.Figure 2.38a. Three layer example.Figure 2.38b. Observation probe responses at 10 Hz (left) and 0.5 Hz (right).Figure 2.39a. FT-00 (Main Interactive) exact forward liquid simulator.Figure 2.39b. FT-00 (Batch Mode) exact forward liquid simulator.Figure 2.39c. FT-00 (DOI) exact forward liquid simulator.Figure 2.40. FT-01, exact inverse liquid simulator.Figure 2.41. FT-02, exact, steady forward and inverse gas simulators.Figure 2.42a. FT-06, numerical liquid and gas forward simulator.Figure 2.42b. FT-06, general flow rate functions, forward simulator.Figure 2.42c. FT-07, a FT-06 extension supporting general time-varying flowline ...Figure 2.43. FT-PTA-DDBU, early time, low mobility, flowline volume non-negligib...Figure 2.44. Classic inverse model.Figure 2.45. Both software modules apply to drawdown-buildup applications using ...Figure 2.46. Input screen for “Model SC-DD-INVERSE-2.”Figure 2.47. Input screen for “Model SC-DD-FORWARD-3B.”Figure 2.48a. Input screen for “Model SC-DD-FORWARD-2-CREATE-TABLES-3B.”Figure 2.48b. Pressure trends for selected overbalance pressures.Figure 2.49a. Input screen for “Model SC-DDBU-INVERSE-2.”Figure 2.49b. Input screen for “Model SC-DDBU-FORWARD-4NOPOR.”Figure 2.50. Input screen for integrated forward simulator for both “drawdown on...Figure