Polysaccharides. Группа авторов

Читать онлайн.
Название Polysaccharides
Автор произведения Группа авторов
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9781119711407



Скачать книгу

      103. Stölzel, K. et al., Immortalised human mesenchymal stem cells undergo chondrogenic differentiation in alginate and PGA/PLLA scaffolds. Cell Tissue Bank., 16, 1, 159–170, 2015.

      104. Pumberger, M. et al., Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials, 99, 95–108, 2016.

      105. Stilhano, R.S. et al., Injectable alginate hydrogel for enhanced spatiotemporal control of lentivector delivery in murine skeletal muscle. J. Controlled Release, 237, 42–49, 2016.

      106. Diniz, I.M.A. et al., Gingival mesenchymal stem cell (GMSC) delivery system based on RGD-coupled alginate hydrogel with antimicrobial properties: A novel treatment modality for peri-implantitis. J. Prosthodont.: Official Journal of the American College of Prosthodontists, 25, 2, 105–115, 2016.

      107. Yang, S. et al., Polypyrrole/alginate hybrid hydrogels: Electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromol. Biosci., 16, 11, 1653–1661, 2016.

      108. Shahriari, D. et al., Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. J. Biomed. Mater. Res. Part A, 104, 3, 611–619, 2016.

      109. Agarwal, A. et al., Polymeric materials for chronic wound and burn dressings, in: Advanced Wound Repair Therapies, D. Farrar, (Ed.), pp. 186–208, Woodhead Publishing, Sawston, Cambridge, 2011.

      110. Ip, M., Antimicrobial dressings, in: Advanced Wound Repair Therapies, D. Farrar, (Ed.), pp. 416–449, Woodhead Publishing, Sawston, Cambridge, 2011.

      111. Wietlisbach, C.M., Wound Care, in: Fundamentals of Hand Therapy, Second Edition, C. Cooper, (Ed.), pp. 206–218, Mosby, St. Louis, 2014.

      112. Wüstenberg, T., Cellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 91–142, Wiley VCH, Weinheim, 2015.

      113. Dourado, F. et al., Celluloses as Food Ingredients/Additives: Is There a Room for BNC?, in: Bacterial Nanocellulose, M. Gama, F. Dourado, S. Bielecki, (Eds.), pp. 123–133, Elsevier, Amsterdam, 2016.

      114. Wüstenberg, T., Microcrystalline Cellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 143–184, Wiley VCH, Weinheim, 2015.

      115. Wüstenberg, T., Fundamentals of Water-Soluble Cellulose Ethers and Methylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 185–274, Wiley VCH, Weinheim, 2015.

      116. Wüstenberg, T., Ethylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 275–318, Wiley VCH, Weinheim, 2015.

      117. Wüstenberg, T., Hydroxypropylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 319–342, Wiley VCH, Weinheim, 2015.

      118. Wüstenberg, T., Hydroxypropylmethylcellulose, in: Cellulose and Cellulose Derivatives in the Food Industry, T. Wüstenberg, (Ed.), pp. 343–378, Wiley VCH, Weinheim, 2015.

      119. Gutiérrez, T.J., Chitosan Applications for the Food Industry, in: Chitosan: Derivatives, Composites and Applications, S.I. Shakeel Ahmed, (Ed.), pp. 183–232, Scrivener Publishing LLC, Beverly, Mass., USA, 2017.

      120. Wardy, W. et al., Chitosan–soybean oil emulsion coating affects physico-functional and sensory quality of eggs during storage. LWT—Food Sci. Technol., 44, 10, 2349–2355, 2011.

      121. Perdones, A. et al., Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol., 70, 32–41, 2012.

      123. Synowiecki, J. et al., Immobilization of enzymes on krill chitin activated by formaldehyde. Biotechnol. Bioeng., 24, 8, 1871–1876, 1982.

      124. Han, X.-Q. and Shahidi, F., Extraction of harp seal gastric proteases and their immobilization on chitin. Food Chem., 52, 1, 71–76, 1995.

      125. Shi, W. and Ma, Z., Amperometric glucose biosensor based on a triangular silver nanoprisms/ chitosan composite film as immobilization matrix. Biosens. Bioelectron., 26, 3, 1098–1103, 2010.

      126. Dai, H. et al., Biocompatible electrochemiluminescent biosensor for choline based on enzyme/ titanate nanotubes/chitosan composite modified electrode. Biosens. Bioelectron., 25, 6, 1414– 1419, 2010.

      127. Lin, H. et al., Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sens. Actuators B: Chem., 147, 1, 343–349, 2010.

      128. Diaconu, M., Litescu, S.C., Radu, G.L., Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sens. Actuators B: Chem., 145, 2, 800–806, 2010.

      129. Featherstone, S., Ingredients used in the preparation of canned foods, in: A Complete Course in Canning and Related Processes, Fourteenth Edition, S. Featherstone, (Ed.), pp. 147–211, Woodhead Publishing, Oxford, 2015.

      130. Qin, Y. et al., Applications of Alginate as a Functional Food Ingredient, in: Biopolymers for Food Design, A.M. Grumezescu, and A.M. Holban, (Eds.), pp. 409–429, Academic Press, Cambridge, Massachusetts, 2018.

      131. Qin, Y., Seaweed Hydrocolloids as Thickening, Gelling, and Emulsifying Agents in Functional Food Products, in: Bioactive Seaweeds for Food Applications, Y. Qin, (Ed.), pp. 135–152, Academic Press, Cambridge, Massachusetts, 2018.

      132. Yang, J. and Li, J., Self-assembled cellulose materials for biomedicine: A review. Carbohydr. Polym., 181, 264–274, 2018.

      133. Hanafi, A. et al., Cellulose acetate phthalate microencapsulation and delivery of plasmid DNA to the intestines. J. Pharm. Sci., 102, 2, 617–626, 2013.

      134. Song, Y. et al., Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules, 9, 8, 2259–2264, 2008.

      135. Song, Y. et al., Cellulose-based polyelectrolyte complex nanoparticles for DNA vaccine delivery. Biomater. Sci., 2, 10, 1440–1449, 2014.

      136. Tseng, S.J., Chen, Z.-H., Tang, S.-C., Application of heparinized cellulose matrices for substrate-mediated bFGF peptide and transgene delivery to stimulate cellular proliferation. Cellulose, 18, 1, 95–104, 2011.

      137. Fundueanu, G. et al., Cellulose acetate butyrate–pH/thermosensitive polymer microcapsules containing aminated poly(vinyl alcohol) microspheres for oral administration of DNA. Eur. J. Pharm. Biopharm., 66, 1, 11–20, 2007.

      138. Ngo, D.-N., Kim, M.-M., Kim, S.-K., Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr. Polym., 74, 2, 228–234, 2008.

      139. Ngo, D.-N. et al., Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Funct. Foods, 1, 2, 188–198, 2009.

      140. Liu, J.N., Study on the hypolipidemic mechanism of chitosan, Jiangnan University, China, 2008.

      141. Mahdy Samar, M. et al., Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci., 58, 1, 33–41, 2013.