Diarylethene Molecular Photoswitches. Masahiro Irie

Читать онлайн.
Название Diarylethene Molecular Photoswitches
Автор произведения Masahiro Irie
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527822867



Скачать книгу

device) and CMOS (complementary metal oxide semiconductor), detect photons based on photovoltaic effects and construct photo‐images. Animals and plants have no such inorganic semiconductors. In biological systems, molecular photoswitches are extensively employed in photoreceptors. Vision, for example, uses the cis‐to‐trans photoisomerization of retinal to control the conformation of rhodopsin and initiate the transduction cascade to generate neural signals, while phototaxis of Chlamydomonas is activated by the trans‐to‐cis photoisomerization of retinal in the channel rhodopsin. In plants, the photoisomerization of phytochromes plays a key role in controlling their biological activity. These ingenious uses of organic molecules for the detection of photons in biological systems indicate that molecular photoswitches have the potential to be applied in the construction of various types of photon‐working reagents and devices.

      In 1988, the serendipitous discovery of diarylmaleic anhydrides, which undergo thermally irreversible photoswitching reactions, paved the way to solve the problem. Inferring from experimental as well as theoretical analysis, the molecular design principle of thermally irreversible molecular photoswitches was established. This new class of molecular photoswitches is named “Diarylethene.” The well‐designed diarylethenes provide outstanding photoswitching performance: both isomers are thermally stable for more than 470 000 years at 30 °C, photocyclization(coloration)/photocycloreversion(decoloration) can be repeated for more than 104 cycles, the quantum yield of cyclization reaction is close to 1 (100%), and the response times of both photocyclization and photocycloreversion reactions are less than 20 ps. Many of the diarylethene derivatives undergo photoswitching reactions even in the crystalline phase. In this book, the discovery and development of diarylethenes are described comprehensively from the basic concepts to their applications.

      I wish to express my deep appreciation to my colleagues, Prof. M. Morimoto, Prof. S. Kobatake, Prof. K. Matsuda, Prof. T. Fukaminato, Prof. K. Uchida, Prof. T. Kawai, Prof. T. Tsujioka, and Dr. K. Uno for their kind help and support to prepare the manuscript. Finally, I also express my thanks to my family, Setsuko, Fumi, and Hisafumi for their continual encouragement to complete this book.

      December 2020

      Masahiro Irie

      1.1 General Introduction

      Photoisomerization is one of the fundamental reactions in photochemistry [1–3]. Trans–cis isomerization, sigmatropic rearrangements, and electrocyclic rearrangements are typical examples. Molecules capable of these reversible photoisomerization reactions are called photochromic molecules or molecular photoswitches [4–10]. The two isomers differ from each other not only in their absorption and fluorescence spectra but also in their geometrical structures, oxidation/reduction potentials, refractive indices, and dielectric constants.

Chemical reaction depicts molecular photoswitches and years when they were discovered.

      The two lower molecules, furylfulgide [19] and diarylethene [20–22], undergo P‐type (thermally irreversible but photochemically reversible) photoswitching reactions. In the P‐type molecular photoswitches, photogenerated right‐side colored isomers are thermally stable and practically never return to the right‐side colorless isomers in the dark at room temperature. Although many molecular photoswitches have been so far reported, P‐type chromophores are very rare. The families, furylfulgides and diarylethenes, are two such rare examples exhibiting P‐type reactivity. The primary difference between furylfulgides and diarylethenes is fatigue resistance. Photoinduced coloration/decoloration cycles of well‐designed diarylethene derivatives can be repeated more than 104 times maintaining adequate photoswitching ability (see Section 3.3), whereas in most cases the corresponding cycles of furylfulgides are limited to less than 102 times.

      The instant property changes of photoswitchable molecules by photoirradiation without any additional process lead to their use in various photoresponsive materials and photonic devices. When the bistable molecules are incorporated into materials, the electronic structure changes can be applied to optical memory media and conductance