Название | Supramolecular Polymers and Assemblies |
---|---|
Автор произведения | Andreas Winter |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9783527832408 |
2 Chapter 2Figure 2.1 Schematic representation of the basic guanidinium–carboxylate interaction as well as of several guanidinium receptor. Source: Dietrich et al. [11]; Linton and Hamilton [12].Figure 2.2 Schematic representation of the binding of N‐acetyl‐protected α‐amino carboxylates to the receptor 6. Source: Schmuck [14].Figure 2.3 (a) Schematic representation of the dimerization of the self‐complementary guanidinium derivative 7[16]. (b) Schematic representation of the supramolecular self‐assembly of the heteroditopic derivatives 8. Source: Schmuck et al. [17]. Figure reproduced with kind permission. © 1999 Wiley‐VCH and 2000 American Chemical Society, respectively.Figure 2.4 (a) Schematic representation of the self‐assembly of two complementary components in a Vernier‐type fashion (the most straightforward case, i.e. combining a ditopic and a tritopic building block is depicted). (b) Schematic representation of the self‐assembly of 9 and 10 into a molecular [2×3]‐Vernier motif. Source: Kelly et al. [21].Figure 2.5 Schematic representation of the template‐driven self‐assembly of 11 and 12 into a supramolecular rectangle. Source: Terfort and von Kiedrowski [22].Figure 2.6 Schematic representation of star‐shaped assembly 13 and the corresponding X‐ray single crystal structure (R = CF3). Source: Kraft and Fröhlich [23]. © 1998 Royal Chemical Society.Figure 2.7 Schematic representation of the regioselective intramolecular photolysis reaction in the ion‐paired derivative 14. Source: Breslow et al. [24].Figure 2.8 (a) Schematic representation of the bowl‐shaped triple‐ions 15–18; (b) schematic representation (left) and space‐filling model of the ion pair 16 × 18 (right). Source: Grawe et al. [27]. Figure reproduced with kind permission. © 2002 American Chemical Society.Figure 2.9 (a) Schematic representation of metalloporphyrin 19 and calix[4]arene 20, as building blocks for supramolecular capsule formation. (b) Illustration of the simulated structure of the capsule (CHARMn 24.0). Source: Rehm and Schmuck [7]. © 2010 Royal society of chemistry.Figure 2.10 Schematic representation of cavitand 21 and its anion‐supported self‐assembly into a (212X4) capsule (X denotes as monovalent anion). Source: Oshovsky et al. [31]. © 2006 American Chemical Society.Figure 2.11 Proposed phase diagram for the supramolecular polymer formed by HOOC–PαMS–COOH (MW = 10 kDa) and H2N–PI–NH2PIP (MW = 18 kDa). The constituent blocks phase separated at the UCST. ODT denotes the regime for the order–disorder transition of the block copolymer structure. Tg and Ti define the glass transition and dissociation temperature, respectively. Microphase separation can be observed in the left‐to‐right diagonally hatched area; the mixture of telechelic polymers is macroscopically phase separated in the right‐to‐left diagonally hatched area. In the stippled regime, the copolymer is disordered phase, and finally, the clear area represents a homogeneous mixture of the two constituent polymers. The dashed lines represent the proposed continuations of the curves, which were experimentally not accessible due to ionic aggregation and/or cleavage of the supramolecular bonds. Source: Russell et al. [47]. © 1988 American Chemical Society.Figure 2.12 (a) Scheme representation of the vesicles formed by the self‐assembly of PS‐COOH and PNIPAM‐NH2 in aq. dioxane. (b) Representative TEM image of the thusly obtained vesicles. Source: Qian and Wu [64]. Figure reproduced with kind permission. © 2008 American Chemical Society.Figure 2.13 Transmission electron microscopy (TEM) images of ionically end‐capped PS‐b‐PI: (a) Me3N+‐PS‐b‐PI; (b) Me3N+ ‐ PS ‐ b ‐ PI ‐ SO3−. Source: Schädler et al. [67]. Figure reproduced with kind permission. © American Chemical Society.Figure 2.14 Pictures of an “intelligent” supramolecular rubber, which exhibited (a) self‐healing and (b) shape‐memory properties. Source: Wang et al. [68]. Figure reproduced with kind permission. © 2015 The Royal Chemical Society.Figure