Название | DNA- and RNA-Based Computing Systems |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9783527825417 |
Acknowledgments
This research was supported in part by NSFC under grants 61871115 and 61501116, in part by the Jiangsu Provincial NSF for Excellent Young Scholars under grant BK20180059, in part by the Six Talent Peak Program of Jiangsu Province under grant 2018‐DZXX‐001, in part by the Distinguished Perfection Professorship of Southeast University, in part by the Fundamental Research Funds for the Central Universities, and in part by the SRTP of Southeast University.
References
1 1 Soloveichik, D., Cook, M., Winfree, E., and Bruck, J. (2008). Nat. Comput. 7: 615–633.
2 2 Cook, M., Soloveichik, D., Winfree, E., and Bruck, J. (2009). Programmability ofchemical reaction networks. In: Algorithmic Bioprocesses, Natural Computing Series (eds. A. Condon, D. Harel, J.N. Kok, et al.), 543–584. Berlin Heidelberg: Springer.
3 3 Chen, H., Doty, D., and Soloveichik, D. (2014). Nat. Comput. 13: 517–534.
4 4 Cummings, R., Doty, D., and Soloveichik, D. (2016). Nat. Comput. 15: 245–261.
5 5 Chalk, C., Kornerup, N., Reeves, W., and Soloveichik, D. (2018). Composable rate‐independent computation in continuous chemical reaction networks. In: International Conference on Computational Methods in Systems Biology, 256–273. Springer.
6 6 Soloveichik, D., Seelig, G., and Winfree, E. (2010). Proc. Natl. Acad. Sci. U.S.A. 107: 5393–5398.
7 7 Chen, Y., Dalchau, N., Srinivas, N. et al. (2013). Nat. Nanotechnol. 8: 755–762.
8 8 Vasic, M., Soloveichik, D., and Khurshid, S. (2020). CRN++: molecular programming language. Nat. Comput. 19. Springer: 1–17.
9 9 Huang, D., Jiang, J.R., Huang, R., and Cheng, C. (2012). Compiling program control flows into biochemical reactions. In: 2012 IEEE/ACM International Conference on Computer‐Aided Design (ICCAD), 361–368.
10 10 Wang, B., Chalk, C., and Soloveichik, D. (2019). DNA: single instruction, multiple data computation with DNA strand displacement cascades. In: International Conference on DNA Computing and Molecular Programming, 219–235. Springer.
11 11 McQuarrie, D.A. (1967). J. Appl. Probab. 4: 413–478.
12 12 Shea, A., Fett, B., Riedel, M.D., and Parhi, K. (2010). Writing and compiling code into biochemistry. In: Biocomputing 2010, 456–464. World Scientific.
13 13 Murphy, N., Petersen, R., Phillips, A. et al. (2018). J. R. Soc. Interface 15: 20180283.
14 14 Thubagere, A.J., Thachuk, C., Berleant, J. et al. (2017). Nat. Commun. 8: 14373.
15 15 Beaver, D. (1995). DNA Based Comput. 27: 29–36.
16 16 Qian, L., Soloveichik, D., and Winfree, E. (2011). Efficient Turing‐universal computation with DNA polymers. In: DNA Computing and Molecular Programming (Lecture Notes in Computer Science), vol. 6518, 123–140.
17 17 Salehi, S.A., Parhi, K.K., and Riedel, M.D. (2017). Chemical reaction networks for computing polynomials. ACS Synth. Biol. 6 (1): 76–83, ACS Publications.
18 18 Chen, H.L., Doty, D., and Soloveichik, D. (2014). ACM Conference on Innovations in Theoretical Computer Science, 313–326.
19 19 Horn, F. and Jackson, R. (1972). Arch. Ration. Mech. Anal. 47: 81–116.
20 20 Cheng, B. and Riedel, M. (2009). Stochastic transient analysis of biochemical systems and its application to the design of biochemical logic gates. In: Biocomputing 2009, 4–14.
21 21 Jiang, H., Riedel, M.D., and Parhi, K.K. (2013). Digital logic with molecular reactions. In: 2013 IEEE/ACM International Conference on Computer‐Aided Design (ICCAD), 721–727. IEEE.
22 22 Ge, L., Zhong, Z., Wen, D. et al. (2016). IEEE Trans. Mol. Biol. Multi‐Scale Commun. 3: 33–47.
23 23 Jiang, H., Kharam, A.P., Riedel, M.D., and Parhi, K.K. (2010). A synthesis flow for digital signal processing with biomolecular reactions. In: 2010 IEEE/ACM International Conference on Computer‐Aided Design (ICCAD), 417–424. IEEE.
24 24 Jiang, H., Riedel, M.D., and Parhi, K.K. (2011). Synchronous sequential computation with molecular reactions. In: Proceedings of the 48th Design Automation Conference, 836–841.
25 25 Jiang, H., Salehi, S.A., Riedel, M., and Parhi, K.K. (2013). ACS Synth. Biol. 2: 245–254.
26 26 Kharam, A., Jiang, H., Riedel, M., and Parhi, K.K. (2011). Binary counting with chemical reactions. In: Biocomputing 2011, 302–313.
27 27 Li, M., Ge, L., You, X., and Zhang, C. (2018). Basic arithmetics based on analog signal with molecular reactions. In: 2018 IEEE International Conference on Communications (ICC), 1–6. IEEE.
28 28 Fett, B. and Riedel, M.D. (2008). Module locking in biochemical synthesis. In: 2008 IEEE/ACM International Conference on Computer‐Aided Design, 758–764. IEEE.
29 29 Salehi, S.A., Liu, X., Riedel, M.D., and Parhi, K.K. (2018). Sci. Rep. 8: 8312.
30 30 Liu, X. and Parhi, K.K. (2020). Molecular and DNA artificial neural networks via fractional coding. IEEE Trans. Biomed. Circuits Syst. 14 (3): 490–503.
31 31 Liu, X. and Parhi, K.K. (2019). Training DNA perceptrons via fractional coding. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE.
32 32 Liu, X. and Parhi, K.K. (2019). Computing radial basis function support vector machine using DNA via fractional coding. In: Proceedings of the 56th Annual Design Automation Conference 2019, 1–6.
33 33 Salehi, S.A., Jiang, H., Riedel, M.D., and Parhi, K.K. (2015). IEEE Trans. Mol. Biol. Multi‐Scale Commun. 1: 249–264.
34 34 Salehi, S.A., Riedel, M.D., and Parhi, K.K. (2014). Asynchronous discrete‐time signal processing with molecular reactions. In: 2014 48th Asilomar conference on signals, systems and computers, 1767–1772. IEEE.
35 35 Qian, L. and Winfree, E. (2011). J. R. Soc. Interface 8: 1281–1297.
36 36 Qian, L. and Winfree, E. (2011). Science 332: 1196–1201.
37 37 Qian, L., Winfree, E., and Bruck, J. (2011). Nature 475: 368–372.
38 38 Cherry, K.M. and Qian, L. (2018). Nature 559: 370–376.
39 39 Maass, W. (2000). Neural Comput. 12: 2519–2535.
40 40 Li, D. (2012). IEEE Signal Process Mag. 29: 141–142.
41 41 Wilhelm, D., Bruck, J., and Qian, L. (2018). Proc. Natl. Acad. Sci. U.S.A. 115: 903–908.
4 Connecting DNA Logic Gates in Computational Circuits
Dmitry M. Kolpashchikov1,2* and Aresenij J. Kalnin3
1University of Central Florida, Chemistry Department, 4111 Libra Drive, Orlando, FL, 32816‐2366, USA
2University of Central Florida, Burnett School of Biomedical Sciences, 6900 Lake Nona Blvd, Orlando, FL, 32816, USA
3SCAMT Institute, Laboratory of Molecular Robotics and Biosensor Materials, 9 Lomonosova Street, St. Petersburg, 191002, Russian Federation
4.1 DNA Logic Gates in the Context of Molecular Computation
Electronic microprocessor systems are based on semiconductor logic gates, which employ electronic input and output signals and power supplies [1]. A critical feature, which contributes to the undoubted success of electronic circuits, is input–output signal homogeneity: the same electron voltage value emerging as an output of one gate can be admitted as an input of another gate. Such connections of logic gates can achieve selected functions of varying complexity. This very large‐scale