Secondary Metabolites of Medicinal Plants. Bharat Singh

Читать онлайн.
Название Secondary Metabolites of Medicinal Plants
Автор произведения Bharat Singh
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527825592



Скачать книгу

15: 1415–1423.

      7 Hwang, Y.H., Cho, W.K., Jang, D. et al. (2014). High-performance liquid chromatography determination and pharmacokinetics of coumarin compounds after oral administration of Samul-Tang to rats. Pharmacogn. Mag. 10: 34–39.

      8 Kai, G., Li, L., Jiang, Y. et al. (2009). Molecular cloning and characterization of two tropinone reductases in Anisodus acutangulus and enhancement of tropane alkaloid production in AaTRI-transformed hairy roots. Biotechnol. Appl. Biochem. 54: 177–186.

      9 Kim, O., Kim, S., Ohyama, K. et al. (2010). Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Rep. 29: 403–411.

      10 Lee, S., Shin, D.S., Kim, J.S. et al. (2003). Antibacterial coumarins from Angelica gigas roots. Arch. Pharmacal. Res. 26: 449–452.

      11 Park, N.I., Park, J.H., Lee, C.Y. et al. (2010). Agrobacterium rhizogenes-mediated transformation of β-glucuronidase reporter gene in hairy roots of Angelica gigas Nakai. Plant Omics J 3: 115–120.

      12 Rahman, L., Kouno, H., Hashiguchi, Y. et al. (2009). HCHL expression in hairy roots of Beta vulgaris yields a high accumulation of p-hydroxybenzoic acid (pHBA) glucose ester, and linkage of pHBA into cell walls. Bioresour. Technol. 100: 4836–4842.

      13 Shi-yu, Z. and Kuo-chang, C. (1989). Angelica sinensis (Oliv.) Diels.: in vitro culture, regeneration, and the production of medicinal compounds. In: Medicinal and Aromatic Plants II. Biotechnology in Agriculture and Forestry, vol. 7 (ed. Y.P.S. Bajaj), 1–22. Berlin: Springer.

      14 Tabanca, N., Gao, Z., Demirci, B. et al. (2014). Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species. J. Agric. Food. Chem. 62: 8848–8857.

      15 Tsay, H.S. (1999). Tissue culture technology of medicinal herbs and its application of medicinal herbs and its application in Taiwan. In: Biodiversity and Allelopathy: From Organisms to Ecosystems in The Pacific (eds. C.H. Chou, G.R. Waller and C. Reinhardt), 137–144. Taipei: Academia Sinica.

      16 Tsay, H.S., Chang, W.D., Chen, C.C., and Chang, Y.S. (1994). The production of imperatorin from Angelica dahurica var. Formosana by cell suspension culture. J. Agric. Assoc. China 168: 32–48.

      17 Zhang, H.-C., Liu, J.-M., Lu, H.-Y., and Gao, S.-L. (2009). Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep. 28: 1205–1213.

      18 Zhou, G.M. (1980). Studies on useful compounds of Bai-Zhi for healing Yin-Hsieh Ping. Chung-Chen-Yau Res. 4: 33.

      19 Zhou, G.M., Yu, C.G., Han, Y.C., and Mun, C.T. (1988). Studies on Bai-Zhi. IV. The toxicity test of useful compounds. Med. J. China Hosp. 8: 220–221.

      2.12.1 Ethnopharmacological Properties and Phytochemistry

      Arnebia benthamii (Wall. ex G. Don) Johnston (Fam. – Boraginaceae) is a Himalayan medicinal plant found in Western Himalaya. It is an erect, herbaceous, and perennial habitat, used in the formulation of gaozaban, antibacterial, antifungal, anti-inflammatory, and wound-healing drug (Manjkhola and Dhar 2002). The root contains shikonin, possesses several medicinal properties, and is available in the market with a trade name Ratan Jot (Kirtikar and Basu 1984). The species also possesses stimulant, tonic, diuretic, and expectorant properties. The flowering shoots are used in the treatment of tongue, throat, fever, and cardiac disorders. Arnebin-1 and arnebin-3 isolated from this species possess anticancer activity (Harborne and Baxter 1996).

      The Arnebia species is a perennial grass, found in India, Persia, Sudan, Arabia, China, Egypt, Nubia, and Pakistan. Some common species are A. benthamii, A. euchroma, A. guttata, A. nobilis, and A. hispidissima (Anonymous 1985). Roots are recommended for the treatment of ulcers, boils, cuts, heart ailments, headache, and fever. The aqueous extract of flowering shoot is known as remedy for tongue and throat troubles and cardiac complaints, while the whole plant is used as a stimulant, tonic, diuretic, and expectorant. Likewise, the roots of A. euchroma are used in bruises and skin eruptions (Chopra et al. 1956; Kirtikar and Basu 1967; Anonymous 1976). A. hispidissima also possesses anti-inflammatory (Singh and Singh 2003; Singh et al. 2004), antimicrobial (Bhakuni et al. 1969; Shukla et al. 1969; Jain et al. 1999), antitumor (Sankawa et al. 1977; Katti et al. 1979), antiviral (Kashiwada et al. 1995), and inhibition of platelet aggregation activities (Yao et al. 1991).