Как мы учимся. Почему мозг учится лучше, чем любая машина… пока. Станислас Деан

Читать онлайн.



Скачать книгу

Другими словами, они не используют данные оптимальным образом.

      В этом состязании младенческий мозг одерживает победу без труда: чтобы выучить новое слово, малышам достаточно одного или двух повторений. Их мозг выжимает максимум из минимума данных – умение, которое по-прежнему ускользает от компьютеров. Нейрональные алгоритмы научения умудряются извлечь суть из малейшего наблюдения. Если ученые желают добиться такой же производительности в машинах, им следует черпать вдохновение из механизмов, которые интегрировала в наш мозг сама эволюция. Это может быть внимание, которое позволяет нам отбирать информацию и усиливать релевантные сигналы, или, например, сон – алгоритм, посредством которого наш мозг синтезирует усвоенное в течение дня. Новые машины с такими свойствами уже появились, и их производительность неуклонно растет – в ближайшем будущем они, безусловно, составят серьезную конкуренцию нашему мозгу.

      Согласно одной из новых теорий, причина, по которой человеческий мозг до сих пор превосходит машины, заключается в том, что он действует, как ученый-статистик. Постоянно вычисляя вероятности, он оптимизирует свою способность к научению. Судя по всему, в процессе эволюции наш мозг приобрел сложные алгоритмы, которые беспрерывно оценивают его знания и сопряженную с ними неуверенность (неопределенность). Такое систематическое внимание к вероятностям является в математическом смысле наилучшим способом в полной мере использовать каждую единицу инфор- мации4.

      Недавние эксперименты подтверждают эту гипотезу. Даже младенцы понимают вероятности: по всей видимости, они с рождения встроены в их нейронные сети. Дети ведут себя как маленькие ученые: их мозг изобилует гипотезами, которые напоминают научные теории и проверяются на опыте. Способность оперировать вероятностями, по большей части бессознательно, вписана в саму логику нашего научения. Она позволяет любому из нас постепенно отвергать ложные гипотезы и сохранять только те теории, которые согласуются с данными. В отличие от других видов животных люди используют это чувство вероятностей для построения научных теорий о внешнем мире. Только мы – представители Homo sapiens – систематически генерируем абстрактные символические мысли и регулярно оцениваем их правдоподобие на основе новых наблюдений.

      Инновационные компьютерные алгоритмы, учитывающие этот новый подход к научению, называются «байесовскими» – в честь преподобного Томаса Байеса (1702–1761), который сформулировал отдельные элементы этой теории еще в XVIII веке. Я предполагаю, что байесовские алгоритмы произведут настоящую революцию в машинном обучении: уже сегодня они способны извлекать абстрактную информацию не хуже любого ученого.

      Наше путешествие в современную науку о научении состоит из трех частей.

      Первая часть под названием «Что такое научение?» начинается с определения того, что значит для человека или животного – и для любого