Альбрехт Дюрер. Дневники и письма. Альбрехт Дюрер

Читать онлайн.



Скачать книгу

да Винчи, Избранные произведения, т. II, с. 84.

      6

      Леонардо да Винчи, Избранные произведения, т. II, стр. 65.

      7

      См.: Album de Villard de Honnecourf, Paris, 1927.

      8

      Леон Баттиста Альберт и, Книга о живописи, «Мастера искусства об искусстве», т. I, ОГИЗ, с. 85.

      9

      По словам Камерария, Дюрер подготовил материал для специального трактата о пропорциях лошади, который был у него украден.

      10

      О связи ранних опытов Дюрера в области теории пропорций со средневековой традицией см.: Е. Panofsky, Albrecht Durer, London, 1948; J. Giesen, Durers Proportionsstudien in Rahmen der allgemeinen Proportionsentwicklung, Bonn, 1930.

      11

      Помимо названной выше монографии, см. также: Е. Panofsky, Durers Kunsttheorie, vornehmlich in ihrem Verhaltnis zu der Kunsttheorie der Italiener, Berlin, 1915.

      12

      Об отношении Дюрера к немецкой строительной геометрии см.: М. Steск, Durers Gestaltlehre der Mathematik und der bildenden Kunst, Halle, 1948. Там же приведена исчерпывающая библиография по этому вопросу.

      13

      Известный итальянский живописец и теоретик искусства Джованни Паоло Ломаццо (1538–1600) утверждал, что Дюрер заимствовал сведения о перспективе из сочинений миланского живописца Винченцо Фоппа и работавшего в Милане и Риме живописца и архитектора Брамантино (Бартоломео Суарди), однако о сочинениях Фоппа и Брамантино ничего не известно.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QBmRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAMAAAExAAIAAAAQAAAATgAAAAAAAJOjAAAD6AAAk6MAAAPocGFpbnQubmV0IDQuMi44AP/bAEMAAgEBAgEBAgICAgICAgIDBQMDAwMDBgQEAwUHBgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwHCQ4PDQwOCwwMDP/bAEMBAgICAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIApQBwgMBIQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP38ooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKr6tc3FpplxLa2/2y4jjZooN4j85gMhdx4GTxk9M0AToWKDcMN3ApaACigAooAKKAMHx38UfDPwusobrxN4h0Pw7b3MnlRS6nfRWiSv12qZGAJ9hVjwv470PxxbedousaXq8O0N5lldJcLg9DlCRg+tAGtRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABTWcL3oA+c9Gj8GXv7RXxiufiPf6HPPZtZWFja688Bgs9FmsrckxrIcCKa7+0h2I+Zogp+4K81+JXiTTpv2qv2ffEvw003SdEuPFPiG70PUJ9M+yyLqmjpYTTyR3SwZ4Q24aIh8Rl48/eaMUB9sDpRUgFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQBy/xU+M3hv4L6PDeeItQFot1J5NtBFDJcXV2+M7YoY1aSRgMkhFOACTgAmvlL9sDwj4t/ax8V+BfiD8LfGXjCPw/4DdLrUdD8M340/WNTkdllEUttdmOIFPLt2MdwuWR5FC52g0u4HnPjL4x2/7euj+Bb0fDvQF+Kfgu7P2u41+5EVkot7qOPUIY42t5ZHhk2MYzPBHtJjkQEqSKnwa/ax+FH7EfjTxRaz/DWaLxxfwX2tXWo+FoLXVNNsLZPKH2eMQmOa3tY2aFXYwRozHzXIZ2w/IR7N+xH8ZviMuk+IvHXxY8UXk3hnVp9miWU+jvZTSTEReZHZ2nlm4lt1kEnku482RXJKYVTX0F8Kf2m/Bfxl1y50nR9Unh16zhFzPo+qWFxpeqQwk4ErWtzHHMIycAPs2nI5pMZ31FSAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAVx3xL0fx1qOs6ZJ4S1zw3pNjDHP9vi1PSpb17lzs8ryyk0ewDEm7O7O4YHHIB4R+yHbeOIf2mvF1r8aJtH1Hx1pulW7eGr20ULbz6ZJJL9pa2XC7CbhF3phnSI2iPJKy+Y+D+1d8S9e1z4uW8Pw3s7r/hcHhfV4I4tM0+6tk/tLRnEbTR37zN5Sq0f2qSL77IyRHAJZGrqIyP+CZd/eW/xy8Vf8JFbaPp/iS88G6AurfZ7hXb+1Ip9RS9tGwSN0DmP5V4CzocnfXT/APBWhbWw8DfDnUUg0ldUj8UtZwXlwifaLWCfTb5J/JcjcpK7c7Tn5V64FHUZyX7JPinxvefEn4Q+LPjYtjYw33gUWHh66uljh3arMltLcFtsrxpJLAMR5KyMsc4Kr0N3/god8fpbrxB4W0vwHJZr451ASQeDNUtpLZru9v5RsaO3dlkIhSISedlCAZISy7AXB1EfS/wB0r4maR4eaP4la14Q1u/8mDypdC0uexAk2nzfMEk0obJ24K7e/HIA7+pGFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFAHM/Ev4PeGvjBpkNr4i0m31JLaQTW8hZop7VwQQ8UqFZI2BAO5GB4FeO/Fv9g/SdI+EPiKz+ENrpvgbxhrTrLeaopZbrxAgG2S0vL4q92I5U+XzY3EsZVGU/Lgu4HyDaf8Ee08P+JX8O+B9Zl1fx0wi1bxLrXi3TbfV/DmgyzNva3tIJIzcefIADhLhW2xxyTSOxQNg/tF/sOyeHdd8K+Efjf4ofwho+uXUuk+FvFHw1jmslhnuFWH7NqaSu7LDI8qLlFKMW2s0QI33cD6b/Zk/Z3+I3hWC0+FvxU0uHx14FktVtby61i5Ov2OprDbY88NOPMgkkmKfuXUxqISUO5iT7H8I/8Agnx8HfgZ8WpvHfhnwPY2Pi6W1+xLqc11cXk1tB3jh86RxCp6ERhcjg8VLYHs1FSAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFADYpVmjVlYMrDII6EU27u47C1knmkSGGFS7u7bVRRyST2A9aAI9J1a117S7a+sbiG8s7yJZ4J4XEkc0bAMrqw4KkEEEcEGpI7uKW4khWRGliALoG+ZAc4JHbOD+VAEleT/tP/ALUNn8CH8N+HrFbbUPH3j69Ol+F9MuDIlvd3AwXkmkRW8uGJTvdvvEDChmIFAHzjYfFL4vfsp/ta+MPCN5Y+A/GTfEyyl8cx6ra3DaVF4cNtb2llKt5HPK2bfMcJRxKGbdIAoEZFfIWi/tK/tAftofHbxp8HfGXgBb34gM265trW4/syz03SEuEhmubd5yV8sMkixtG0pnknBLKsZzfmB+r/AMCf2kvDPxvl1jStNmksfEnhW5NhrWg3jp/aGkyrwPNRWYFGGGSRSVdWBBOa9EqACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigDzD4+ftieAP2aPEOg6R4t1W8ttW8ULO2l2NnplzqFzeiEKZNkcEbscb1GMZJYAZJra+C37RPgv9ofTdQuvB+vWusDSLgWuoQhHhudPmKhhHNDIqyRMVIYB1GQQRkUARfFT43Q/Crx94B0a60+Sa28datLoyXqyYWynW0nuY964OQ4t3QHIwxXrnFc/+3DqV1p/7NPiCOG5j06x1Awafq+ovvxpOmzzJFeXYK8qYrd5HDdFKhm+VSaYHyf4a+LP/AAwl+2D8Hfhj4f8AjJD4q+FnjDTLlI9M1t7Ob+xIYI2aJo76MJ8rj7vmFiwhfkllr668c/tX/DfT/AHiC+h8YeE9c/s3TLm8ksbPWbWaa5SKJnZFXfjJCkc8Z60wOD/4JvftB6T8Sf2Hvh5qiItjbW1smgD/AElLiPfbMbZWEqnayOY1AYcEsBivO9E1rTviL4o+LfxwXx9e+CvE3g1r3wvNplvJA1tZWenSyvCL6CVT5jzk+crAxsI51VGGWZgD6U+AHxe/4Wp8DtB8UalHb6bNfW5+1ASgwCWN2jkeNz1iZkZkJwSjKetef/tK/Hb4e+M7GTwJbyP438YXzxtYaToEwkvLC5U+ZBPJcLlLLa6BlllZRlDgOQVJ1A+B/D3wV0W6/bg+K/w7lXxL8ePig3w8sbfV7a4vorDQbmaa5lkuIL+aCOI7YwLQjfvaRpZDsBLAfO/7QtvNpn7f2peG/glqfjrwZ8SrG/NpqEF9qV5LcJpdtaw3L6ZaM7Ml1HNPNdTKkkikC2kQA/u1agPo79h3/gof8O/2RP2VvGmr+OrXxVovxy1pr06jrGr6HI0ev3lvDcfZ44p1QRrFEtuUEMnluCpypZ8n9AvGfx+1jSP2TvCfiLQRp/iXxF4ug0nT7G5JMFg91fGKIXMpTJSFWkLkLk8BRyciWB5b+zh4j8afsU/EfwX8H/HnxEufjJ/wl8twlvrtxZNBqml3Jjmuttz+8kRoHEcix8oyYiUK6ksno/7eP7WsP7KPg7wjefao7aXXPFFhZ3Mj2E12ltpqyiXUbhhGDsWK0SZjI3ypwTQB7nbXkd5bRzROskcqh0YdGB5BFfGf7TPxU+Pnibxxa+OPh1qHg7wz8PPh14hn03VNK13UTE/jSOKQQzs7rbu1qscqOse1mL53sABsZID6g+Afxm039oT4P6D4z0iOaHTtftvtEKSMjMvJUjcjMjjcpw6MVYYZSQQa1PAnxI0P4nadeXeg6lb6pb6dqFzpVy8JP7i6t5WimiYEAhkdWUj29CDSA2pJFiXcx2j1NOByKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigApCwBoAVW3CvJo/2ho/Dv7Wd98O9evNNt01LQF8Q6C29Y3aOFzFdxyZckspaORTtA2M/XYTQB4NqH7VGm+DP+CgPiSRdBufitNrOiwW3hm78FhNVudAhjMf2qyvAGCWokmkjmErOAw4OPLGeP/YJ+Ef7SXg/x7481rUfB/hz4f6V4md47C48Sa3JrF/bW0d5e3FsslvC5810iu1hDPcJsSFRhwAKr1At/ti6R8Kdb03w9b/tHftKRpdaHfDWbbSNBurbRUju42BiljSIS3f7tXwCZTncTxxjj9c+JH7Puof2tazeC/wBp74mafqUKR3Q12611NHvQOx/tG5ggbdtLcjaQ3YcA1AytG/aK+Cngb7Na+Gf2T/AOmpaIRG+q6v4bgkU7gRFiGW4kaTJJ2tgfKfmzxVbxb+2Pp9ncsbz9kTwJHJbQx+dfNZx7LZj8p8ud9OMTbSOMsB0BAPFFhHA/Eb4pfCn4mWN9qd/8DtVtZIVLXz2Nz4VjltI8sm8Ifs0wB2blaQZIUEDArwrxbpHhf4katu0n4U+Im0/V495kTwrbXMssQx5fmz2WuQo7DaMMyLtAXGMGqEdha6A8vhZtNtdI1DVDbWqQDw9pWgaVYXMSDBLMmo3WoN5aggERQvy2ByCa0/gZ+yZ4hi17RrifXr34ayysb3Sovts5ubVz5kb3SRTQQJEES5DGSDSk2BTi4jBDEAr/APBKnw742v8A46/FTUvgt4y0PUrr4jalqGhHxFrNncLFa2VgbWU6nCN7vcSs16VVZJQXDiRnJUq3Hf8ABST4V+Jj+34ln8YvHGlro+h/Yr248WaRpL2M