Путь разума в поисках истины. Лекции по православной апологетике. Алексей Осипов

Читать онлайн.
Название Путь разума в поисках истины. Лекции по православной апологетике
Автор произведения Алексей Осипов
Жанр Религиоведение
Серия
Издательство Религиоведение
Год выпуска 2009
isbn 978-5-7868-0079-2



Скачать книгу

наукам второго рода относятся математика, современная формальная логика, некоторые области кибернетики и теоретической физики. В этих науках непосредственным предметом рассмотрения являются не чувственно воспринимаемые вещи, а т. н. абстрактные объекты (понятия), как, например, математическая абстракция точки, не имеющая физических размеров, абстракция идеально правильных геометрических фигур и т. п. По этой причине в этих науках не могут использоваться опытные индуктивные доказательства, а применяются дедуктивные.

      2. Доказательство и истинность

      Целью доказательства является установление истинности тезиса. Однако истинность суждения, обоснованного посредством доказательства, как правило, не носит безусловного характера, т. е. в большинстве случаев доказанное суждение представляет собой лишь относительную истину. Относительность истинности доказанных суждений вытекает,

      во-первых, из того, что основания доказательства – это особенно ясно видно в эмпирических науках – лишь приблизительно верно отражают действительность, т. е. в свою очередь являются относительными истинами;

      во-вторых, применимость данной логики к одному кругу объектов еще не означает применимости ее к другому, более широкому кругу. Например, логика, применимая к конечным объектам, может оказаться неприменимой к объектам бесконечным. Так, средневековые ученые считали парадоксом тот факт, что множество всех натуральных чисел равномощно своей собственной части – множеству всех четных (или нечетных) чисел. Их ошибка проистекала оттого, что свойства конечных объектов они пытались распространить на бесконечные объекты;

      в-третъих, существует целый ряд понятий, которые, не будучи четко определены, могут приводить к противоречиям при их использовании в рамках обычной человеческой логики. Например, понятие всемогущества Божия, неверно понимаемого как неограниченная способность совершать любые действия, приводит к парадоксам, типа известного вопроса о том, может ли Бог сотворить камень, который не сможет поднять? (В действительности, Его всемогущество является лишь одним из проявлений Его любви и премудрости. Поэтому Бог не может совершить зла, сотворить другого бога, перестать быть Богом и т. п.).

      Поэтому, чтобы гарантировать истинность доказанного суждения, необходимо четкое определение употребляемых понятий, применимость употребляемой логики к данному кругу объектов, выяснение непротиворечивости данной системы. Но последнее является особенно трудной задачей даже для формальной арифметики.

      Как доказал Гёдель, утверждение о непротиворечивости формальной системы в рамках самой системы недоказуемо. Великий немецкий математик Гильберт († 1943) сокрушался по этому поводу: «…Подумайте: в математике, этом образце достоверности и истинности, образование понятий и ход умозаключений… приводят к нелепостям. Где же искать надежность и истинность, если даже само математическое мышление дает осечку»[66].

      Современное



<p>66</p>

Попов Ю., Пухначев Ю. Парадоксы. – Наука и жизнь. 1971. № 1, с. 102.