Название | Exactly: How Precision Engineers Created the Modern World |
---|---|
Автор произведения | Simon Winchester |
Жанр | Биографии и Мемуары |
Серия | |
Издательство | Биографии и Мемуары |
Год выпуска | 0 |
isbn | 9780008241797 |
This all came about in a moment of the happiest chance, and just as with Bramah and the lock in Piccadilly, it involved a shopwindow (Henry Maudslay’s) and the proud public showroom display of the five-foot-long brass screw Maudslay had made on his lathe and which he had placed there, center stage, as an advertisement of his skills. Soon after he set up the screw display, so naval legend has it, came the serendipitous moment. It involved the two figures who were going to create the pulley block factory, and who vowed to do so properly, to fill an urgent and growing need.
A block-making factory of sorts had already been set up in the southern dock city of Southampton in the mid-eighteenth century, performing some of the sawing and morticing of the wooden parts, but much of the finishing work still had to be done by hand, and in consequence, the supply chain remained unreliable at best. And a reliable supply chain was seen to be vital for England’s survival.
Britain had been at war with France, on and off, for much of the late eighteenth century, and the arrival on the scene of Napoleon Bonaparte in the aftermath of the French Revolution convinced London that her forces needed to be at the ready for much of the early nineteenth century, too. Of the two British fighting forces, the army and the Royal Navy, it was the admirals who took the lion’s share of the war budget, and Britain’s docks were soon bristling with big ships ready to cast off at a moment’s notice to give any French opponents, Napoleon’s especially, a taste of the lash. Shipyards were busy building, dry docks were busy repairing, and the seas from the Channel to the Nile, from the Barbary Coast to Coromandel, were alive with great British men-o’-war, powerful and watchful, ceaselessly on the prowl.
These were, of course, all sailing vessels. Mostly they were enormous craft with wooden hulls and copper-sheathed keels, with three decks ranged with cannon, with enormous masts of Norfolk Island pine supporting equally vast acreages of canvas sailcloth. And all the sail ware of the time were bolts of canvas suspended, supported, and controlled by way of endless miles of rigging, of stays and yards and shrouds and footropes, most of which had to pass through systems of tough wooden pulleys that were known simply to navy men as blocks—pulley blocks, part of a warship’s arrangements known within and beyond the maritime world as block and tackle.
A large ship might have as many as fourteen hundred pulley blocks, which were of varying types and sizes depending on the task required. A block with a single pulley might be all that was needed to allow a sailor to hoist a topsail, say, or move a single spar from one location to another. The lifting of a very heavy object (an anchor, for example) might need an arrangement of six blocks, each with three sheaves, or pulleys, and with a rope passing through all six such that a single sailor might exert a pull of only a few easy pounds in order to lift an anchor weighing half a ton. Block-and-tackle physics, taught still in some good primary schools, shows how even the most rudimentary pulley system can offer the greatest of mechanical advantage, and combines this power with an equally great degree of simplicity and elegance.
Blocks for use on a ship are traditionally exceptionally strong, having to endure years of pounding water, freezing winds, tropical humidity, searing doldrums heat, salt spray, heavy duties, and careless handling by brutish seamen. Back in sailing ship days, they were made principally of elm, with iron plates bolted onto their sides, iron hooks securely attached to their upper and lower ends, and with their sheaves, or pulleys, sandwiched between their cheeks, and around which ropes would be threaded. The sheaves themselves were often made of Lignum vitae, the very same hard and self-lubricating wood that John Harrison used for the gear trains of some of his clocks: most modern blocks have aluminum or steel sheaves and are themselves made of metal, except where the desired look of the boat is old-fashioned, in which case there is much showy brassware and varnished oak.
Hence the early nineteenth-century Royal Navy’s acute concern. An increasingly fractious Napoleonic France lay just twenty miles away across the Channel, and countless maritime problems were demanding Britain’s maritime attentions elsewhere: what principally concerned the admirals was not so much the building of enough ships but the supply of the vital blocks that would allow the sailing ships, to put it bluntly, to sail. The Admiralty needed one hundred thirty thousand of them every year, of three principal sizes, and for years past, the complexity of their construction meant that they could be fashioned only by hand. Scores of artisanal woodworkers in and around southern England were originally bent to the task, a supply system that proved notoriously unreliable.
As hostilities at sea became ever more commonplace, as more and more ships were ordered, the drumbeat for a more efficient system became ever louder. The then–inspector general of naval works, Sir Samuel Bentham, finally decided he would act; he would sort things out. And in 1801, Bentham was approached by a figure named Sir Marc Brunel, who said he had in mind a specific scheme for doing so.*
Brunel, a royalist refugee from the very French instability currently so vexing the Lords of the Admiralty—though he had first immigrated to America and become New York’s chief engineer before returning to England to marry—had sized up the mechanics of the block-making problem. He knew the various operations that were necessary to make a finished block—there were at least sixteen of them; a block, simple though it might have looked, was in fact as complex to make as it was essential to employ—and he had roughed out designs for machines that he thought could perform them.* He sought and, in 1801, won a patent: “A New and Useful Machine for Cutting One or More Mortices Forming the Sides of and Cutting the Pin-Hole of the Shells of Blocks, and for Turning and Boring the Shivers, and Fitting and Fixing the Coak Therein.”
His design was, in more ways than one, revolutionary. He had one machine perform two separate functions—a circular saw, for example, could perform the duties of a mortice cutter as well. He had the surplus motion of one machine drive its neighbor, maintaining a kind of mechanical lockstep. The necessary coordination of the machines one with the other required that the work each machine performed be accomplished with the greatest precision, for a wrong dimension passed into the system by one wrongly set machine would act much as a computer virus does today, amplifying and worsening by the minute, ultimately infecting the entire system, and forcing it to shut own. And rebooting a system of enormous iron-made steam-powered machines with flailing arms and whirling straps and thundering flywheels is not just a matter of pressing a button and waiting half a minute.
Given the complexity of the system he had sold to the navy, it was essential only for Brunel to find an engineer who would and could construct such a set of never-before-made machines, and ensure that they were capable of the repetitious making, with great precision, of the scores of thousands of the wooden pulley blocks the navy so keenly needed.
This is where Henry Maudslay’s window comes in. An old friend of Brunel’s from his French days, another migrant, named M. de Bacquancourt, happened to pass by the Maudslay workshop on Margaret Street and saw, prominent in the bow window, the famed five-foot-long brass screw that Maudslay himself had made on his lathe. The Frenchman went inside, spoke to some of the eighty employees in the machine shop, and then to the principal himself, and came away firm in the belief that if one man in England could do the work Brunel needed, here he was.
So Bacquancourt told Brunel, and Brunel met Maudslay out at Woolwich. As part of the interview, Brunel then showed the youngster an engineering drawing of one of his proposed machines—whereupon Maudslay, who was able to read drawings in the same way that musicians can read sheet music with the facility that others read books, recognized it in an instant as a means of making blocks. Models of the proposed engines were constructed to show the Admiralty just what was envisioned, and Maudslay set to work, with a formal government commission.
He was to devise and build, as specified in Brunel’s drawings, the first precision-made machines in the world that would be established for the sole purpose of manufacturing items. In this case it was pulley blocks, but the items could just as well have been guns, or clocks, or, in time to come, cotton gins or motorcars—en masse.
The project took him six years. The navy built an enormous brick structure in its dockyard at Portsmouth to accommodate the armada of engines they knew was coming. And one by one, first from his workshop back up on London’s Margaret Street and then, as the company expanded, from a site in Lambeth, south of