Название | Как устроен мир. Пирамида чисел Фибоначчи – Кучина. Алгоритмы цифровой Вселенной |
---|---|
Автор произведения | Владимир Кучин |
Жанр | Философия |
Серия | |
Издательство | Философия |
Год выпуска | 0 |
isbn | 9785448504280 |
– число 19 – 1,9 – 2 – число ряда Фибоначчи 2;
– число 31 – 3,1 – 3 – число ряда Фибоначчи 3;
– число 50 – 5,0 – 5 – число ряда Фибоначчи 5;
– число 81 – 8,1 – 8 – число ряда Фибоначчи 8;
– число 131 – 13,1 – 13 – число ряда Фибоначчи 13;
– число 212 – 21,2 – 21 – число ряда Фибоначчи 21;
– число 343 – 34,3 – 34 – число ряда Фибоначчи 34;
– число 555 – 55,5 – 55 – число ряда Фибоначчи 55;
– число 898 – 89,8 – 89 – число ряда Фибоначчи 89;
Таким образом, ряды Фибоначчи и естественный ряд Кучина – математические родственники, но ряд Кучина более точный, а его члены встречаются в нашем физическом мире непосредственно в абсолютных значениях. Покажем правильность первого утверждения.
2.5. Золотое сечение
Как известно числа ряда Фибоначчи относятся приблизительно как число Фидия, или «золотое сечение». Почитаем раздел из БСЭ [6].
Отношение сторон по «золотому сечению» (согласно чертежу) х=0,62. Но если мы применим числа Фибоначчи 5 и 8, то получим результат 5/8=0,6, в тоже время числа ряда Кучина, например 31 и 50, дадут более точный результат 31/50=0,62.
Правильность второго утверждения о повсеместной применимости чисел естественного ряда Кучина будет показана в следующей главе. Автор приведет примеры из физических законов и цитаты из книг естествоиспытателей разных эпох.
Поиски нахождения чисел из ряда Фибоначчи в нашем мире, т.е. 13, 21, 34, 55, 89, 144, и т. д. автор предоставляет читателям, но он заявляет – эти числа в абсолютном значении в физических законах не встречаются.
Цитата из БСЭ.
Глава 3. Естественный ряд Кучина – основа гармонии мира
3.1. Числа 3 и 2 ряда Кучина
Ряд Кучина начинается с чисел 3 и 2. Не будем касаться философии и теологии, а приведем факт, который, возможно, читателям не известен. Великий французский физик Федерико Жолио-Кюри в 1939 году обнаружил, что начало ядерной реакции идет только с 3-х нейтронов. За этим идет реакция 2-х и более нейтронов и далее при невысокой скорости нейтронов (бинарность) будет развиваться реакция взрывного характера. Цитата из [7].
Цитата из Кудрявцева.
Таким образом, на начальной стадии реакции – самый первый шаг – 3 нейтрона и далее хотя бы 2 нейтрона – именно так начинается ряд Кучина. Цепная ядерная реакция не может идти по ряду Фибоначчи: 1, 1, 2, 3, 5…, необходимо сразу «подать» число 3! Природа так и делает.
3.2.а. Числа 5 и 7 ряда Кучина
Существуют банальные применения чисел 5 и 7, например «пять пальцев», «семь дней недели» и много-много других. Но эти два числа связывает одна общность, которая давно нас сопровождает в печатном деле. Автор говорит о формате листов бумаги, которыми мы пользуемся. Считается, что эти форматы ввиду их удобства в 1768 году ввел профессор из Геттингена Георг Лихтенберг. Отношение сторон листа в них в современной трактовке принято как «2—1», или 1,414, на практике это