Название | Основы эконометрики в среде GRETL. Учебное пособие |
---|---|
Автор произведения | Александра Сергеевна Малова |
Жанр | Управление, подбор персонала |
Серия | |
Издательство | Управление, подбор персонала |
Год выпуска | 0 |
isbn | 9785392202348 |
В данном пособии весь материал излагается с точки зрения практики – то есть все основные разделы курса эконометрики для бакалавриантов даны в примерах и задачах. Поскольку невозможно приобрести навык проведения эконометрических расчетов, только изучая учебник, предполагается, что читатель должен иметь возможность проделать все излагаемые действия на практике. С этой целью в пособии использовались данные из учебника J. M. Wooldridge «Basic econometrics», которые доступны в GRETL. Все наборы данных при первом обращении к ним в пособии обозначены ссылками и указателями на источник.
Перед тем как начать осваивать основы эконометрики в среде GRETL, необходимо скачать и установить на свой компьютер сам статистический пакет. Он доступен по ссылке http://GRETL.sourceforge.net/. Вся информация о том, как установить GRETL, приводится на сайте, поэтому нет нужды в подробном изложении, стоит лишь сказать, что программа имеет версию как под ОС Windows, так и под Mac OS, а также что библиотеки данных должны быть установлены отдельно, для этого нужно перейти по ссылке http://GRETL.sourceforge.net/GRETL_data.html.
Удачи в проведении интересных, содержательных и полезных эконометрических исследований!
1. Линейная регрессионная модель
Для начала введем некоторые обозначения. Предположим, что некоторая величина Y зависит от величин
, где . Через n обозначим число наблюдений, по которым строится регрессия, k – число регрессоров в модели,Модель такого вида называется классической линейной регрессионной моделью (ЛРМ) в случае, если выполняются следующие предпосылки:
1.
, – ошибки модели.2.
– детерминированные величины.3.
– математическое ожидание ошибок равно нулю,4.
,5. Если выполняется дополнительная предпосылка о нормальном распределении ошибок
, то классическая линейная регрессионная модель называется нормальной линейной регрессионной моделью (НЛРМ).Подробнее о предпосылках линейной регрессионной модели можно прочесть в [2, 3].
2. Оценка линейной регрессионной модели
Рассмотрим множественную линейную регрессию
, ,
где
– образование в годах, – общий стаж работы в годах, – опыт работы у текущего работодателя, в годах,Для того чтобы оценить предложенную модель по методу наименьших квадратов (МНК), используем команду меню Модель – Метод наименьших квадратов.
В появившемся диалоговом окне в поле Зависимая переменная помещаем переменную
(для этого выделяем ее курсором в списке переменных и нажимаем на стрелку, соответствующую окну Зависимая переменная. Данный способ перемещения переменных справедлив для всех операций с диалоговыми окнами).Для дальнейшего удобства можно поставить галочку в окошке Установить по умолчанию. Это делается для того, чтобы при изменении спецификации исследуемой модели зависимая переменная не менялась. В окно Регрессоры отправляем регрессоры модели – это переменные
, ,