Название | Живи долго! Научный подход к долгой молодости и здоровью |
---|---|
Автор произведения | Майкл Грегер |
Жанр | |
Серия | New Med |
Издательство | |
Год выпуска | 2023 |
isbn | 978-5-4461-2235-6 |
483
DrugAge: database of ageing-related drugs. https://genomics.senescence.info/drugs/stats.php. Updated February 7, 2023. Accessed February 11, 2023.; https://genomics.senescence.info/drugs/stats.php
484
Janssens GE, Houtkooper RH. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. 2020;21(6):709–19. https://pubmed.ncbi.nlm.nih.gov/32562114/
485
Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904
486
Larqué E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. Nutrition. 2007;23(1):87–95. https://pubmed.ncbi.nlm.nih.gov/17113752/
487
Khandia R, Dadar M, Munjal A, et al. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells. 2019;8(7):674. https://pubmed.ncbi.nlm.nih.gov/31277291/
488
Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.; https://pubmed.ncbi.nlm.nih.gov/13905658/
489
Zhang H, Simon AK. Polyamines reverse immune senescence via the translational control of autophagy. Autophagy. 2020;16(1):181–2. https://pubmed.ncbi.nlm.nih.gov/31679458/
490
Luo J, Si H, Jia Z, Liu D. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants. 2021;10(2):283. https://pubmed.ncbi.nlm.nih.gov/33668479/
491
Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch-Eur J Physiol. 2017;469(9):1051–9. https://pubmed.ncbi.nlm.nih.gov/28389776/
492
van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
493
Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018;128(4):1208–16. https://pubmed.ncbi.nlm.nih.gov/29457783/
494
Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. 2021;78(7):3333–54. https://pubmed.ncbi.nlm.nih.gov/33439271/
495
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
496
Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/
497
van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
498
Mau T, Yung R. Adipose tissue inflammation in aging. Exp Gerontol. 2018;105:27–31. https://pubmed.ncbi.nlm.nih.gov/29054535/
499
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
500
de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/
501
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
502
van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
503
Hofmann B. Young blood rejuvenates old bodies: a call for reflection when moving from mice to men. Transfus Med Hemother. 2018;45(1):67–71. https://pubmed.ncbi.nlm.nih.gov/29593463/
504
Ludwig FC, Elashoff RM. Mortality in syngeneic rat parabionts of different chronological age. Trans N Y Acad Sci. 1972;34(7):582–7. https://pubmed.ncbi.nlm.nih.gov/4507935/
505
Lavazza A, Garasic M. Vampires 2.0? The ethical quandaries of young blood infusion in the quest for eternal life. Med Health Care Philos. 2020;23(3):421–32. https://pubmed.ncbi.nlm.nih.gov/32447568/
506
Rebo J, Mehdipour M, Gathwala R, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7(1):13363. https://pubmed.ncbi.nlm.nih.gov/27874859/
507
Mehdipour M, Skinner C, Wong N, et al. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY). 2020;12(10):8790–819. https://pubmed.ncbi.nlm.nih.gov/32474458/
508
Boada M, López OL, Olazarán J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimers Dement. 2020;16(10):1412–25. https://pubmed.ncbi.nlm.nih.gov/32715623/
509
Biller-Andorno N. Young blood for old hands? A recent anti-ageing trial prompts ethical questions. Swiss Med Wkly. 2016;146(3940):w14359. https://pubmed.ncbi.nlm.nih.gov/27684581/
510
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082705/
511
Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16INK4a-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845101/
512
de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/
513
Chen X, Yi Z, Wong GT, et al. Is exercise a senolytic medicine? A systematic review. Aging Cell. 2021;20(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811843/