Название | Это база: Зачем нужна математика в повседневной жизни |
---|---|
Автор произведения | Иэн Стюарт |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2021 |
isbn | 9785002234196 |
Еще один метод распознавания манипуляций заключается в рассмотрении альтернативных карт и сравнении гипотетических результатов с использованием данных о вероятных паттернах распределения голосов по всему региону, о разбивке которого на округа идет речь. Если карта, предложенная Темными, дает им 70 % мест, а большинство альтернативных карт – лишь 45 %, то они явно мухлюют.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
Термин введен британским статистиком Дэвидом Кендаллом. Другое название – «пространство неряшливости» – используется специалистами по автоматическому распознаванию рукописного текста. – Прим. науч. ред.
Комментарии
1
В 2012 году аудиторская компания Deloitte провела исследование на тему «Измерение экономической пользы математических исследований в Великобритании». На тот момент научной деятельностью в сферах теоретической и прикладной математики, статистики и информатики занимались 2,8 млн человек. Суммарный вклад математических наук в экономику Великобритании (валовая добавленная стоимость) в том году составил £208 млрд – чуть меньше £250 млрд в ценах 2020 года, или около $300 млрд. Получается, что вклад 2,8 млн человек, то есть менее чем 10 % британского занятого населения, в экономику составил 16 %. Крупнейшими секторами были банковское дело, промышленные исследования и разработки, вычислительные услуги, аэрокосмическая отрасль, фармацевтика, архитектура и строительство. В качестве примеров в отчете названы, в частности, смартфоны, прогнозирование погоды, здравоохранение, кинематографические спецэффекты, улучшение спортивных показателей, национальная безопасность, борьба с эпидемиями, безопасность сетевых данных и повышение эффективности промышленного производства.
2
. http://www.maths.ed.ac.uk/~v1ranick/papers/wigner.pdf.
3
Сама формула выглядит так:
где