Название | Машинное обучение. Погружение в технологию |
---|---|
Автор произведения | Артем Демиденко |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
В задачах регрессии метод k-NN использует среднее или медианное значение целевой переменной у k ближайших соседей в качестве прогноза для нового наблюдения. Таким образом, предсказание для нового наблюдения вычисляется на основе значений его ближайших соседей.
Выбор метрики расстояния является важным аспектом в методе k-NN. Евклидово расстояние является наиболее распространенной метрикой, но также можно использовать и другие метрики, такие как манхэттенское расстояние или расстояние Минковского.
Одним из ограничений метода k-NN является его вычислительная сложность. При большом размере обучающего набора данных поиск ближайших соседей может быть времязатратным. Кроме того, метод k-NN чувствителен к масштабированию данных, поэтому рекомендуется нормализовать или стандартизировать признаки перед применением алгоритма.
Метод k-NN также имеет некоторые проблемы, связанные с выбросами и несбалансированными данными. Выбросы могут искажать результаты, особенно при использовании евклидова расстояния. Кроме того, если классы в обучающем наборе данных несбалансированы (то есть один класс преобладает над другими), то может возникнуть проблема с предсказанием редкого класса.
В целом, метод k-NN представляет собой простой и гибкий алгоритм, который может быть эффективным во многих задачах классификации и регрессии. Однако для его успешного применения необходимо правильно выбрать значение k, подобрать подходящую метрику расстояния и учитывать особенности данных, такие как выбросы и несбалансированность классов.
2.4 Решающие деревья
Решающие деревья – это графические структуры, которые применяются для принятия решений в задачах классификации и регрессии. Они представляют собой одну из наиболее понятных и интерпретируемых моделей машинного обучения, что делает их популярным выбором во многих областях.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.