Машинное обучение. Погружение в технологию. Артем Демиденко

Читать онлайн.
Название Машинное обучение. Погружение в технологию
Автор произведения Артем Демиденко
Жанр
Серия
Издательство
Год выпуска 2023
isbn



Скачать книгу

– целевая переменная». Входные данные представляют собой информацию, на основе которой модель должна сделать предсказание, а выходные данные или целевая переменная представляют собой ожидаемый ответ или результат для данного входа.

      Цель обучения модели заключается в подгонке ее параметров на основе обучающей выборки таким образом, чтобы модель могла корректно обрабатывать новые данные и делать предсказания для них. Этот процесс достигается путем минимизации ошибки или разницы между предсказанными значениями и фактическими значениями в обучающей выборке.

      Существует различные подходы и алгоритмы в Машинном обучении, включая линейную регрессию, логистическую регрессию, деревья решений, случайные леса, градиентный бустинг, нейронные сети и многое другое. Каждый из этих алгоритмов имеет свои особенности и применяется в зависимости от типа задачи и характеристик данных.

      Одним из ключевых аспектов Машинного обучения является обобщение модели на новые данные. Обобщение означает способность модели делать предсказания для данных, которые она ранее не видела. Чем лучше модель обобщает данные, тем более эффективной она является. Обобщение достигается путем обучения на достаточно разнообразных и представительных данных, а также с использованием методов регуляризации, которые помогают контролировать сложность модели и избегать переобучения.

      Машинное обучение имеет широкий спектр применений и используется во многих областях, включая компьютерное зрение, обработку естественного языка, рекомендательные системы, финансы, медицину и другие. Прогресс и инновации в области Машинного обучения продолжают улучшать нашу способность анализировать и понимать данные, делать предсказания и принимать более информированные решения.

      1.2 История Машинного обучения

      История Машинного обучения насчитывает несколько десятилетий развития и прогресса. Одним из первых знаков возникновения Машинного обучения является появление линейной регрессии и метода наименьших квадратов в начале 19-го века. Это был первый шаг к формализации процесса обучения моделей на основе данных.

      В середине 20-го века появились первые искусственные нейронные сети, которые были вдохновлены биологическими нейронными сетями и работой мозга. Однако, развитие Машинного обучения замедлилось из-за ограниченных вычислительных ресурсов и сложностей в обучении глубоких нейронных сетей.

      В конце 20-го и начале 21-го века произошел резкий прорыв в Машинном обучении. С развитием вычислительной мощности и появлением больших объемов данных появилась возможность обучать сложные модели глубокого обучения. Алгоритмы глубокого обучения, такие как сверточные нейронные сети и рекуррентные нейронные сети, привели к значительным достижениям в областях компьютерного зрения, обработки естественного языка, рекомендательных систем и других областях.

      Важным моментом в развитии Машинного обучения стало появление статистического подхода к обучению. В середине 20-го века появились методы статистического обучения, включая линейную и логистическую регрессию, метод наименьших квадратов и метод максимального правдоподобия. Эти методы основывались на статистических принципах и позволяли делать предсказания на основе данных.

      Еще одним важным этапом в истории Машинного обучения было развитие метода опорных векторов (Support Vector Machines, SVM) в 1990-х годах. SVM стало мощным алгоритмом для решения задач классификации и регрессии, основанным на идее нахождения гиперплоскости, которая наилучшим образом разделяет данные разных классов.

      В последние десятилетия наблюдается интенсивное развитие Машинного обучения и его применение в различных областях. С появлением больших объемов данных и увеличением вычислительной мощности появились новые методы и алгоритмы, такие как глубокое обучение, рекуррентные нейронные сети, сверточные нейронные сети и генетические алгоритмы.

      Важным событием в истории Машинного обучения стал конкурс ImageNet Large Scale Visual Recognition Challenge (ILSVRC), который был проведен в 2010 году. Этот конкурс стимулировал развитие глубокого обучения и значительно улучшил результаты в области компьютерного зрения.

      Сегодня Машинное обучение играет важную роль во многих сферах, включая медицину, финансы, автомобильную промышленность, рекламу, кибербезопасность и многое другое. Большие компании активно применяют методы Машинного обучения для анализа данных, оптимизации бизнес-процессов и улучшения пользовательского опыта.

      С развитием Машинного обучения возникают и новые вызовы и вопросы, такие как этика и безопасность, интерпретируемость моделей и проблемы справедливости и предвзятости. Поэтому важно постоянно развивать и улучшать методы Машинного обучения, чтобы использовать его потенциал в наилучшем интересе человечества.

      1.3 Типы задач в Машинном обучении

      Машинное обучение решает различные типы задач в зависимости от характера входных данных и желаемого результата. Вот некоторые из основных типов задач в Машинном обучении:

      Задачи классификации: в этом типе задачи модель должна отнести объекты к определенным классам