Название | Эволюция. Классические идеи в свете новых открытий |
---|---|
Автор произведения | Александр Марков |
Жанр | Биология |
Серия | Династия (Corpus) |
Издательство | Биология |
Год выпуска | 2014 |
isbn | 978-5-17-083218-7 |
К счастью, разные участки генома накапливают нейтральные изменения с очень разной скоростью[18]. Быстро меняющиеся участки ДНК используются для датировки недавних событий, а те, что меняются медленно, хороши для датировки событий глубокой древности.
Дрейф и отбор: кто кого?
Генетический дрейф царствует над нейтральными мутациями (аллелями), отбор – над полезными и вредными. Отбор, повышающий частоту полезных мутаций, называют положительным. Отбор, отбраковывающий вредные мутации, – отрицательным, или очищающим.
Впрочем, все так хорошо и просто только в больших популяциях. В маленьких ситуация сложнее, потому что отбор и дрейф – две главные движущие силы эволюции – начинают конкурировать друг с другом за контроль над слабовредными и слабополезными мутациями.
Посмотрим, как это происходит. Воспользуемся для этого той же моделью с мюмзиками. Изменим только характер мутации, которая привела к появлению аллеля А2. До сих пор мы считали, что мутация была нейтральной. Поскольку она была нейтральной, обладатели аллелей А1 и А2 имели одинаковую плодовитость. Давайте теперь предположим, что мутация была полезной, что она повысила плодовитость мюмзиков на 5 %. Это можно смоделировать так: пусть мюмзики с генотипом А1 рожают по 20 детенышей, а мюмзики с генотипом А2 – по 21. Начальная частота аллеля А2 пусть будет по-прежнему равна 0,5. Только теперь мы рассмотрим популяции с разной численностью (N).
На рисунке (см. ниже) показано, как будет меняться частота А2 в том случае, если его носители имеют пятипроцентное адаптивное преимущество. Мы видим, что в большой популяции (N = 5000) частота А2 неуклонно растет, приближаясь к единице. Так работает отбор в идеальных для него условиях, т. е. в больших популяциях, где влияние дрейфа на полезные и вредные аллели пренебрежимо мало. Форма у кривой довольно правильная, и это наводит на мысль, что ее можно описать какой-нибудь математической формулой. Это действительно так, но выводить формулу мы не будем, чтобы не утомить читателей (а любители математики могут сделать это самостоятельно)[19].
Перед нами, между прочим, важнейший эволюционный процесс – аллельное замещение, т. е. вытеснение более приспособленным аллелем менее приспособленного. Процесс идет не слишком быстро. В большой популяции, например состоящей из миллиона особей, для того чтобы зафиксировалась новая полезная мутация, дающая 5-процентное адаптивное преимущество, требуется около 560 поколений. А ведь 5 % – это серьезное преимущество. Такие мутации – редкость. Ждать, пока зафиксируется мутация с преимуществом в 1 %, придется уже 2800 поколений! Тем не менее в большой популяции отбор «чувствует» даже самую незначительную разницу в
18
Потому что разные участки ландшафта приспособленности имеют разную «проходимость»: одни похожи на ровные плато (там нейтральная эволюция идет быстро), другие – на лабиринт узких тропинок над пропастями (там нейтральные изменения накапливаются медленно). Подробнее об этом см. ниже.
19
Ответ такой: q = (Fx × k)/(1 + Fx × k), где q – частота аллеля А2 по прошествии X поколений, F – относительная приспособленность аллеля А2 по сравнению с конкурирующим аллелем А1 (в нашем случае F = 21/20 = 1,05), k = q0/(1 − q0), где q0 – частота аллеля А2 в начальный момент времени. В бесконечно большой популяции динамика q должна в точности соответствовать этой формуле. В маленьких популяциях соответствие будет неточным из-за генетического дрейфа.