эталонной, или измеряемая величина заведомо больше эталонной, или прибор не может отличить эталонную величину от измеряемой. Почему не может? Да потому, что «слишком уж они одинаковы», а у всякого прибора или инструмента точность измерений не идеальна, а реальна. И так происходит со всеми измерительными инструментами или приборами. Осмыслив измерительный опыт, математик говорит: «Мне нужны три знака, которые я обозначу так: <, =, >. Эти знаки я буду вставлять в свои формулы, и они разобьют формулу на две части, левую и правую. Эти знаки и будут показывать результат измерения левой и правой частей». Таким образом, у этого математика знаки меньше, равно, больше появились в результате осмысления экспериментального факта – измерения. А потому этот математик – материалист. Именно ему и принадлежит, выделенное выше курсивом утверждение. То же самое я могу изложить и в другом, равносильном рассуждении. Математик-материалист говорит: «Я ставлю между левой и правой частью своего выражения тот знак, который бы показал прибор, если бы им была измерена левая и правая часть выражения. А для этого обе части моего выражения должны обладать свойством измеряемости. Если хотя бы одна из этих частей не обладает свойством измеряемости, то измерительный прибор не покажет мне никакого знака. А значит и я не смогу поставить никакого знака. В лучшем случае, я смогу лишь поставить все три знака <, =, >, и соединить их вместе логическим, неисключающим
или». А что же математик-идеалист думает о знаках <, =, >? Их появление он не связывает с фактом измерения. Он полагает, что эти знаки уже имелись в готовом виде, где-то в «пространстве идей»». Он лишь отыскал их в этом «пространстве идей», благодаря своему мощному уму, и включил их в математическую формулу. Такой математик уже готов к восприятию релятивизма, как к чему-то само собой разумеющемуся. Так, например, Д. Гильберт – математик-идеалист. Он с увлечением помогал Эйнштейну преобразовывать к удобному виду уравнения общей теории относительности. Разве могла ему придти в голову мысль, что величины, входящие в его формулы, обязательно должны обладать свойством измеряемости? Конечно, нет! Знак равенства в любом уравнении не говорит идеалисту ничего о том, что этот знак
требует какой-то измеряемости (как и знаки меньше, больше). Об этом он говорит только математику-материалисту. На деле же, величины, входящие в «уравнения» Эйнштейна, не обладают свойством измеряемости, и знак равенства в этих «уравнениях»
только внешне похож на настоящий, математический знак равенства. Мы видим, что идеализм в математике играет такую же негативную роль в познании законов природы, как и в геометрии и физике. В дальнейшем (впрочем, как и до этого) я буду вести свои рассуждения только с точки зрения материалистов: геометров, математиков, физиков. О различном подходе к науке материалистов и идеалистов (геометров и математиков) я довольно подробно писал в 5-й главе книги [5], а также здесь [6].
Вернемся ещё раз к аксиомам неизменности фигур. Обычно ни геометр, ни математик не говорят про указанные