Название | Poly(lactic acid) |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119767466 |
45 45. J. Hu, C. Kan, H. Wang, H. Ma, Highly active chiral oxazolinyl aminophenolate magnesium initiators for isoselective ring‐opening polymerization of rac‐lactide: dinuclearity induced enantiomorphic site control, Macromolecules 2018, 51(14), 5304–5312.
46 46. P. Marin, M. J.‐L. Tschan, F. Isnard, C. Robert, P. Haquette, X. Trivelli, et al., Polymerization of rac‐lactide using achiral iron complexes: access to thermally stable stereocomplexes, Angew. Chem. Int. Edn. 2019, 58(36), 12585–12589.
47 47. H. Tsuji, T. Tajima, Relatively short poly(d‐lactide) segments as intra‐crystallization‐accelerating moieties in stereo diblock poly(lactide)s, Macromol. Mater. Eng. 2014, 299(4), 430–435.
48 48. N. Yui, P. J. Dijkstra, J. Feijen, Stereo block copolymers of l‐ and d‐lactides, Makromol. Chem. 1990, 191(3), 481–488.
49 49. M. Hirata, K. Kobayashi, Y. Kimura, Synthesis and properties of high‐molecular‐weight stereo di‐block polylactides with nonequivalent d/l ratios, J. Polym. Sci. Part A Polym. Chem. 2010, 48(4), 794–801.
50 50. K. Masutani, C. W. Lee, Y. Kimura, Synthesis and thermomechanical properties of stereo triblock polylactides with nonequivalent block compositions, Macromol. Chem. Phys. 2012, 213(7), 695–704.
51 51. T. Rosen, I. Goldberg, V. Venditto, M. Kol, Tailor‐made stereoblock copolymers of poly(lactic acid) by a truly living polymerization catalyst, J. Am. Chem. Soc. 2016, 138(37), 12041–12044.
52 52. K. Masutani, C. W. Lee, Y. Kimura, Synthesis and properties of stereo di‐ and tri‐block polylactides of different block compositions by terminal Diels‐Alder coupling of poly‐l‐lactide and poly‐d‐lactide prepolymers, Polym. J. 2013, 45(4), 427–435.
53 53. K. Masutani, C. W. Lee, R. Kanki, H. Yamane, Y. Kimura, Reactive electrospinning of stereoblock polylactides prepared via spontaneous Diels‐Alder coupling of bis maleimide‐terminated poly‐l‐lactide and bis furan‐terminated poly‐d‐lactide, Sen'i Gakkaishi 2012, 68(3), 64–72.
54 54. K. Masutani, K. Kobayashi, Y. Kimura, C. W. Lee, Properties of stereo multi‐block polylactides obtained by chain‐extension of stereo tri‐block polylactides consisting of poly(l‐lactide) and poly(d‐lactide), J. Polym. Res. 2018, 25(3), 74.
55 55. X. Qiu, R. Liu, Y. Nie, Y. Liu, Z. Liang, J. Yang, et al., Monte Carlo simulations of stereocomplex formation in multiblock copolymers, Phys. Chem. Chem. Phys. 2019, 21(24), 13296–13303.
56 56. N. Sugai, H. Heguri, K. Ohta, Q. Meng, T. Yamamoto, Y. Tezuka, Effective click construction of bridged‐ and spiro‐multicyclic polymer topologies with tailored cyclic prepolymers (kyklo‐Telechelics), J. Am. Chem. Soc. 2010, 132(42), 14790–14802.
57 57. L. Han, Q. Xie, J. Bao, G. Shan, Y. Bao, P. Pan, Click chemistry synthesis, stereocomplex formation, and enhanced thermal properties of well‐defined poly(l‐lactic acid)‐b‐poly(d‐lactic acid) stereo diblock copolymers, Polym. Chem. 2017, 8(6), 1006–1016.
58 58. T. Isono, Y. Kondo, I. Otsuka, Y. Nishiyama, R. Borsali, T. Kakuchi, et al., Synthesis and stereocomplex formation of star‐shaped stereoblock polylactides consisting of poly(l‐lactide) and poly(d‐lactide) arms, Macromolecules 2013, 46(21), 8509–8518.
59 59. N. Sugai, T. Yamamoto, Y. Tezuka, Synthesis of orientationally isomeric cyclic stereoblock polylactides with head‐to‐head and head‐to‐tail linkages of the enantiomeric segments, ACS Macro Lett. 2012, 1(7), 902–906.
60 60. M. H. Rahaman, H. Tsuji, Synthesis and characterization of stereo multiblock poly(lactic acid)s with different block lengths by melt polycondensation of poly(l‐lactic acid)/poly(d‐lactic acid) blends, Macromol. React. Eng. 2012, 6(11), 446–457.
61 61. M. H. Rahaman, H. Tsuji, Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length, J. Appl. Polym. Sci. 2013, 129(5), 2502–2517.
62 62. K. Fukushima, Y. Furuhashi, K. Sogo, S. Miura, Y. Kimura, Stereoblock poly(lactic acid): synthesis via solid‐state polycondensation of a stereocomplexed mixture of poly(l‐lactic acid) and poly(d‐lactic acid), Macromol. Biosci. 2005, 5(1), 21–29.
63 63. K. Fukushima, M. Hirata, Y. Kimura, Synthesis and characterization of stereoblock poly(lactic acid)s with nonequivalent d/l sequence ratios, Macromolecules 2007, 40(9), 3049–3055.
64 64. K. Fukushima, Y. Kimura, An efficient solid‐state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight, J. Polym. Sci. Part A Polym. Chem. 2008, 46(11), 3714–3722.
65 65. T. Kanno, H. T. Oyama, S. Usugi, Effects of molecular weight and catalyst on stereoblock formation via solid state polycondensation of poly(lactic acid), Eur. Polym. J. 2014, 54, 62–70.
66 66. P. Purnama, Y. Jung, S. H. Kim, Stereocomplexation of poly(l‐lactide) and random copolymer poly(d‐lactide‐co‐ε‐caprolactone) to enhance melt stability, Macromolecules 2012, 45(9), 4012–4014.
67 67. M. Jikei, Y. Yamadoi, T. Suga, K. Matsumoto, Stereocomplex formation of poly(l‐lactide)‐poly(ε‐caprolactone) multiblock copolymers with poly(d‐lactide), Polymer 2017, 123, 73–80.
68 68. H. Tsuji, M. Yamasaki, Y. Arakawa, Stereocomplex formation between enantiomeric alternating lactic acid‐based copolymers as a versatile method for the preparation of high performance biobased biodegradable materials, ACS Appl. Polym. Mater. 2019, 1(6), 1476–1484.
69 69. H. Tsuji, S. Sato, N. Masaki, Y. Arakawa, A. Kuzuya, Y. Ohya, Synthesis, stereocomplex crystallization and homo‐crystallization of enantiomeric poly(lactic acid‐co‐alanine)s with ester and amide linkages, Polym. Chem. 2018, 9(5), 565–575.
70 70. N. Mulchandani, A. Gupta, K. Masutani, S. Kumar, S. Sakurai, Y. Kimura, et al., Effect of block length and stereocomplexation on the thermally processable poly(ε‐caprolactone) and poly(lactic acid) block copolymers for biomedical applications, ACS Appl. Polym. Mater. 2019, 1(12), 3354–3365.
71 71. N. Mulchandani, A. Prasad, V. Katiyar, Chapter 4—Resorbable polymers in bone repair and regeneration, in: V. Grumezescu, A. M. Grumezescu (Eds.), Materials for Biomedical Engineering, Elsevier, Amsterdam, 2019, pp. 87–125.
72 72. C. Garofalo, G. Capuano, R. Sottile, R. Tallerico, R. Adami, E. Reverchon, et al., Different insight into amphiphilic PEG‐PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake, Biomacromolecules 2014, 15(1), 403–415.
73 73. W. Zhang, D. Zhang, X. Fan, G. Bai, G. Yuming, Z. Hu, Stable stereocomplex micelles from Y‐shaped amphiphilic copolymers MPEG–(scPLA)2: preparation and characteristics. RSC Adv. 2016, 6(25), 20761–20771.
74 74. C. Feng, M. Piao, D. Li, Stereocomplex‐reinforced PEGylated polylactide micelle for optimized drug delivery, Polym. (Basel) 2016, 8(4), 165.
75 75. Y. Yu, J. Zou, L. Yu, W. Ji, Y. Li, W.‐C. Law, et al., Functional polylactide‐g‐paclitaxel–poly(ethylene glycol) by azide–alkyne click chemistry, Macromolecules 2011, 44(12), 4793–4800.
76 76. N. Mulchandani, A. Gupta, V. Katiyar, Polylactic acid‐based hydrogels and its renewable characters: tissue engineering applications, in: M. I. H. Mondal (Ed.), Cellulose‐Based Superabsorbent Hydrogels, Springer International Publishing, Cham, 2019, pp. 1537–1559.
77 77. S. Noack, D. Schanzenbach, J. Koetz, H. Schlaad, Polylactide‐based amphiphilic block copolymers: crystallization‐induced self‐assembly and stereocomplexation, Macromol. Rapid Commun. 2019, 40(1), 1800639.
78 78. C. Wang, N. Feng, F. Chang, J. Wang, B. Yuan, Y. Cheng, et al., Injectable cholesterol‐enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration, Adv. Healthcare Mater. 2019, 8(14), 1900312.
79 79. Y. Sun, C. He, Synthesis and stereocomplex crystallization