Название | Principles in Microbiome Engineering |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9783527825486 |
154 154 Popkin, B.M. (2001). The nutrition transition and obesity in the developing world. J. Nutr. 131 (3): 871s–873s.
155 155 Wang, Y.C., Bleich, S.N., and Gortmaker, S.L. (2008). Increasing caloric contribution from sugar‐sweetened beverages and 100% fruit juices among US children and adolescents, 1988–2004. Pediatrics 121 (6): e1604–e1614.
156 156 Keast, D.R., Fulgoni 3rd, V.L., Nicklas, T.A., O'Neil, C.E., et al. (2013). Food sources of energy and nutrients among children in the United States: National Health and Nutrition Examination Survey 2003–2006. Nutrients 5 (1): 283–301.
157 157 Kant, A.K. (1996). Indexes of overall diet quality: a review. J. Am. Diet. Assoc. 96 (8): 785–791.
158 158 Popkin, B.M., Siega‐Riz, A.M., and Haines, P.S. (1996). A comparison of dietary trends among racial and socioeconomic groups in the United States. N. Engl. J. Med. 335 (10): 716–720.
159 159 Wang, D.D., Leung, C.W., Li, Y., et al. (2014). Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern. Med. 174 (10): 1587–1595.
160 160 Rehm, C.D., Peñalvo, J.L., Afshin, A., Mozaffarian, D., et al. (2016). Dietary intake among US adults, 1999–2012. JAMA 315 (23): 2542–2553.
161 161 Yatsunenko, T., Rey, F.E., Manary, M.J., et al. (2012). Human gut microbiome viewed across age and geography. Nature 486 (7402): 222–227.
162 162 Muegge, B.D., Kuczynski, J., Knights, D., et al. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science (New York, N.Y.) 332 (6032): 970–974.
163 163 Forgie, A.J., Fouhse, J.M., and Willing, B.P. (2019). Diet‐microbe‐host interactions that affect gut mucosal integrity and infection resistance. Front. Immunol. 10: 14.
164 164 Ventola, C.L. (2015). The antibiotic resistance crisis: Part 2: management strategies and new agents. P & T 40 (5): 344–352.
165 165 Bakken, J.S., Borody, T., Brandt, L.J., et al. (2011). Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9 (12): 1044–1049.
166 166 Bakken, J.S. (2009). Fecal bacteriotherapy for recurrent Clostridium difficile infection. Anaerobe 15 (6): 285–289.
167 167 Jung Lee, W., Lattimer, L.D.N., Stephen, S., et al. (2015). Fecal microbiota transplantation: a review of emerging indications beyond relapsing Clostridium difficile toxin colitis. Gastroenterol. Hepatol. 11 (1): 24–32.
168 168 Foo, J.L., Ling, H., Lee, Y.S., Chang, M.W., et al. (2017). Microbiome engineering: current applications and its future. Biotechnol. J. 12 (3) 1600099.
169 169 Wilson, K.H. (1993). The microecology of Clostridium difficile. Clin. Infect. Dis. 16 (Suppl. 4): S214–S218.
170 170 Keller, J.J. and Kuijper, E.J. (2015). Treatment of recurrent and severe Clostridium difficile infection. Annual Review of Medicine 66 (1): 373–386.
171 171 Czepiel, J., Dróżdż, M., Pituch, H., et al. (2019). Clostridium difficile infection: review. Eur. J. Clin. Microbiol. Infect. Dis. 38 (7): 1211–1221.
172 172 CDC (2020). FAQs for Clinicians about C. diff. https://www.cdc.gov/cdiff/clinicians/faq.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fhai%2Forganisms%2Fcdiff%2Fcdiff_faqs_hcp.html (cited 2 June 2020).
173 173 Schubert, A.M., Rogers, M.A., Ring, C., et al. (2014). Microbiome data distinguish patients with Clostridium difficile infection and non‐C. difficile‐associated diarrhea from healthy controls. MBio 5 (3): e01021.
174 174 Chang, J.Y., Antonopoulos, D.A., Kalra, A., et al. (2008). Decreased diversity of the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. J. Infect. Dis. 197 (3): 435–438.
175 175 Antharam, V.C., Li, E.C., Ishmael, A., et al. (2013). Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 51 (9): 2884–2892.
176 176 Theriot, C.M. and Young, V.B. (2015). Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69: 445–461.
177 177 Fareed, S., Sarode, N., Stewart, F.J., et al. (2018). Applying fecal microbiota transplantation (FMT) to treat recurrent Clostridium difficile infections (rCDI) in children. PeerJ 6: e4663.
178 178 Gough, E., Shaikh, H., and Manges, A.R. (2011). Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53 (10): 994–1002.
179 179 Fadda, H.M. (2020). The route to palatable fecal microbiota transplantation. AAPS PharmSciTech 21 (3): 114.
180 180 Ianiro, G., Maida, M., Burisch, J., et al. (2018). Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: a systematic review and meta‐analysis. United Eur. Gastroenterol. J. 6 (8): 1232–1244.
181 181 Kao, D., Roach, B., Silva, M., et al. (2017). Effect of oral capsule‐ vs colonoscopy‐delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 318 (20): 1985–1993.
182 182 Allegretti, J.R., Fischer, M., Sagi, S.V., et al. (2019). Fecal microbiota transplantation capsules with targeted colonic versus gastric delivery in recurrent Clostridium difficile infection: a comparative cohort analysis of high and lose dose. Dig. Dis. Sci. 64 (6): 1672–1678.
183 183 Willing, B.P., Russell, S.L., and Finlay, B.B. (2011). Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9 (4): 233–243.
184 184 Cai, R., Cheng, C., Chen, J., et al. (2020). Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes.11(4): 680–690.
185 185 Hryckowian, A.J., Van Treuren, W., Smits, S.A., et al. (2018). Microbiota‐accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 3 (6): 662–669.
186 186 Quin, C. and Gibson, D.L. (2019). Dietary lipids and enteric infection in rodent models. In: The Molecular Nutrition of Fats, Chapter 4 (ed. V.B. Patel), 49–64. Academic Press.
187 187 DeCoffe, Quin, C., Gill, S.K.D., et al. (2016). Dietary lipid type, rather than total number of calories, alters outcomes of enteric infection in mice. J. Infect. Dis. 213 (11): 1846–1856.
188 188 Caen, J. and Wu, Q. (2010). Hageman factor, platelets and polyphosphates: early history and recent connection. J. Thromb. Haemost.: JTH. 8 (8): 1670–1674.
189 189 Farré, R., Fiorani, M., Abdu Rahiman, S., and Matteoli, G. (2020). Intestinal permeability, inflammation and the role of nutrients. Nutrients. 12 (4): 1185.
190 190 Murtaza, N., Cuív, P.Ó., and Morrison, M. (2017). Diet and the microbiome. Gastroenterol. Clin. North Am. 46 (1): 49–60.
191 191 Sigall‐Boneh, R., Levine, A., Lomer, M., et al. (2017). Research gaps in diet and nutrition in inflammatory bowel disease. A topical review by D‐ECCO working group [dietitians of ECCO]. J. Crohn's Colitis. 11 (12): 1407–1419.
192 192 Yap, Y.A. and Mariño, E. (2018). An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation. Front. Immunol. 9: 2617.
193 193 Sugihara, K., Morhardt, T.L., and Kamada, N. (2019). The role of dietary nutrients in inflammatory bowel disease. Front. Immunol. 9: 3183.
194 194 Li, T., Qiu, Y., Yang, H.S., et al. (2020). Systematic review and meta‐analysis: the association of a pre‐illness Western dietary pattern with the risk of developing inflammatory bowel disease.