Название | Genomic and Epigenomic Biomarkers of Toxicology and Disease |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119807698 |
81 Michailidi, C., Hayashi, M., Datta, S., Sen, T., Zenner, K., Oladeru, O., Brait, M., Izumchenko, E., Baras, A., Vandenbussche, C., Argos, M., Bivalacqua, T.J., Ahsan, H., Hahn, N.M., Netto, G.J., Sidransky, D., and Hoque, M.O. (2015). Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use. Cancer Prev. Res. (Phila) 8: 208–221.
82 Michlewski, G. and Caceres, J.F. (2019). Post-transcriptional control of miRNA biogenesis. RNA 25: 1–16.
83 Mitra, P., Goyal, T., Singh, P., Sharma, S., and Sharma, P. (2021). Assessment of circulating miR-20b, miR-221, and miR-155 in occupationally lead-exposed workers of North-Western India. Environ. Sci. Pollut. Res. Int. 28: 3172–3181.
84 Mori, M.A., Ludwig, R.G., Garcia-Martin, R., Brandao, B.B., and Kahn, C.R. (2019). Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metab. 30: 656–673.
85 Motta, V., Angelici, L., Nordio, F., Bollati, V., Fossati, S., Frascati, F., Tinaglia, V., Bertazzi, P.A., Battaglia, C., and Baccarelli, A.A. (2013). Integrative analysis of miRNA and inflammatory gene expression after acute particulate matter exposure. Toxicol. Sci. 132: 307–316.
86 Naranmandura, H., Suzuki, N., and Suzuki, K.T. (2006). Trivalent arsenicals are bound to proteins during reductive methylation. Chem. Res. Toxicol. 19: 1010–1018.
87 Nath, K., Singh, D., Shyam, S., and Sharma, Y.K. (2009). Phytotoxic effects of chromium and tannery effluent on growth and metabolism of Phaseolus mungo Roxb. J. Environ. Biol. 30: 227–234.
88 Newman-Taylor, A. (1998). Cadmium. In Environmental and Occupational Medicine, W.N. Rom ed., Philadelphia, PA: Lippincott-Raven.
89 Noonan, C.W., Sarasua, S.M., Campagna, D., Kathman, S.J., Lybarger, J.A., and Mueller, P.W. (2002). Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ. Health Perspect. 110: 151–155.
90 O’Brien, T.J., Ceryak, S., and Patierno, S.R. (2003). Complexities of chromium carcinogenesis: Role of cellular response, repair and recovery mechanisms. Mutat. Res. 533: 3–36.
91 Ochoa-Martinez, A.C., Araiza-Gamboa, Y., Varela-Silva, J.A., Orta-Garcia, S.T., Carrizales-Yanez, L., and Perez-Maldonado, I.N. (2021). Effect of gene-environment interaction (arsenic exposure: PON1 Q192R polymorphism) on cardiovascular disease biomarkers in Mexican population. Environ. Toxicol. Pharmacol. 81: 103519.
92 Odame, E., Chen, Y., Zheng, S., Dai, D., Kyei, B., Zhan, S., Cao, J., Guo, J., Zhong, T., Wang, L., Li, L., and Zhang, H. (2021). Enhancer RNAs: Transcriptional regulators and workmates of NamiRNAs in myogenesis. Cell. Mol. Biol. Lett. 26: 4.
93 Olsson, I.M., Bensryd, I., Lundh, T., Ottosson, H., Skerfving, S., and Oskarsson, A. (2002). Cadmium in blood and urine: Impact of sex, age, dietary intake, iron status, and former smoking: Association of renal effects. Environ. Health Perspect. 110: 1185–1190.
94 Pechova, A. and Pavlata, L. (2007). Chromium as an essential nutrient: A review. Vet Med (Praha) 52: 1–18.
95 Perez-Vazquez, M.S., Ochoa-Martinez, A.C., Ruiz-Vera, T., Araiza-Gamboa, Y., and Perez-Maldonado, I.N. (2017). Evaluation of epigenetic alterations (miR-126 and miR-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. Environ. Sci. Pollut. Res. Int. 24: 28036–28045.
96 Podgorski, J. and Berg, M. (2020). Global threat of arsenic in groundwater. Science 368: 845–850.
97 Proctor, D.M., Suh, M., Campleman, S.L., and Thompson, C.M. (2014). Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology 325: 160–179.
98 Rager, J.E., Bailey, K.A., Smeester, L., Miller, S.K., Parker, J.S., Laine, J.E., Drobna, Z., Currier, J., Douillet, C., Olshan, A.F., Rubio-Andrade, M., Styblo, M., Garcia-Vargas, G., and Fry, R.C. (2014). Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ. Mol. Mutagen. 55: 196–208.
99 Rahman, M.M., Chowdhury, U.K., Mukherjee, S.C., Mondal, B.K., Paul, K., Lodh, D., Biswas, B.K., Chanda, C.R., Basu, G.K., Saha, K.C., Roy, S., Das, R., Palit, S.K., Quamruzzaman, Q., and Chakraborti, D. (2001). Chronic arsenic toxicity in Bangladesh and West Bengal, India: A review and commentary. J. Toxicol. Clin. Toxicol. 39: 683–700.
100 Rajkumar, V. and Gupta, V. (2021). Heavy Metal Toxicity. Treasure Island, FL: StatPearls Publishing LLP. https://www.ncbi.nlm.nih.gov/books/NBK560920
101 Ratnaike, R.N. (2003). Acute and chronic arsenic toxicity. Postgrad. Med. J. 79: 391–396.
102 Rehman, K., Fatima, F., Waheed, I., and Akash, M.S.H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 119: 157–184.
103 Risher, J.F., Nickle, R.A., and Amler, S.N. (2003). Elemental mercury poisoning in occupational and residential settings. Int. J. Hyg. Environ. Health 206: 371–379.
104 Rubio, M., Bustamante, M., Hernandez-Ferrer, C., Fernandez-Orth, D., Pantano, L., Sarria, Y., Pique-Borras, M., Vellve, K., Agramunt, S., Carreras, R., Estivill, X., Gonzalez, J.R., and Mayor, A. (2018). Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One 13: e0193527.
105 Ruiz-Vera, T., Ochoa-Martinez, A.C., Zarazua, S., Carrizales-Yanez, L., and Perez-Maldonado, I.N. (2019). Circulating miRNA-126, -145 and -155 levels in Mexican women exposed to inorganic arsenic via drinking water. Environ. Toxicol. Pharmacol. 67: 79–86.
106 Saliminejad, K., Khorshid, K.H.O.R.R.A.M., Soleymani Fard, H.R., and Ghaffari, S.H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 234: 5451–5465.
107 Salnikow, K. and Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chem. Res. Toxicol. 21: 28–44.
108 Setti, G., Pezzi, M.E., Viani, M.V., Pertinhez, T.A., Cassi, D., Magnoni, C., Bellini, P., Musolino, A., Vescovi, P., and Meleti, M. (2020). Salivary microRNA for diagnosis of cancer and systemic diseases: A systematic review. Int. J. Mol. Sci. 21 (3): 907.
109 Sperling, M. (2005). Chromium. In Encyclopedia of Analytical Science, 2nd edn., P. Worsfold, A. Townshend, and C. Poole, eds., Oxford: Elsevier.
110 States, J.C. (2015). Arsenic: Exposure Sources, Health Risks, and Mechanisms of Toxicity. Hoboken, NJ: John Wiley & Sons.
111 Straif, K., Benbrahim-Tallaa, L., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F., Bouvard, V., Guha, N., Freeman, C., Galichet, L., Cogliano, V., and the WHO International Agency for Research on Cancer Monograph Working Group. (2009). A review of human carcinogens. Part C: Metals, arsenic, dusts, and fibres. Lancet Oncol. 10: 453–454.
112 Strimbu, K. and Tavel, J.A. (2010). What are biomarkers? Curr. Opin. HIV AIDS 5: 463–466.
113 Sudha, S., Kripa, S.K., Shibily, P., and Shyn, J. (2011). Elevated frequencies of micronuclei and other nuclear abnormalities of chrome plating workers occupationally exposed to hexavalent chromium. Iran J. Cancer Prev. 4: 119–124.
114 Sun, B., Xue, J., Li, J., Luo, F., Chen, X., Liu, Y., Wang, Q., Qi, C., Zou, Z., Zhang, A., and Liu, Q. (2017). Circulating miRNAs and their target genes associated with arsenism caused by coal-burning. Toxicol. Res. (Camb) 6: 162–172.
115 Tam, L.M., Price, N.E., and Wang, Y. (2020). Molecular mechanisms of arsenic-induced disruption of DNA repair. Chem. Res. Toxicol. 33: 709–726.
116 Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., and Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 18: 149–175.
117 Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., and Sutton, D.J. (2012). Heavy metal toxicity and the environment. Exp. Suppl. 101: 133–164.
118 Thomas, D.J. (2015). The chemistry and metabolism of arsenic. In Arsenic: Exposure Sources, Health Risks and Mechanisms