Название | Handbook of Aggregation-Induced Emission, Volume 3 |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119643067 |
37 37 Kenry, Duan Y, Liu B (2018). Recent advances of optical imaging in the second near‐infrared window. Adv. Mater. 30(47): 1802394.
38 38 Hu F, Xu S, Liu B (2018). Photosensitizers with aggregation‐induced emission: materials and biomedical applications. Adv. Mater. 30(45): 1801350.
39 39 Ong KH, Liu B (2017). Applications of fluorogens with rotor structures in solar cells. Molecules 22(6): 897.
40 40 Liu B (2016). Aggregation‐induced emission: a new research frontier. Small 12(47): 6427–8.
41 41 Hu R, Qin A, Tang BZ (2020). AIE polymers: synthesis and applications. Progr. Polym. Sci. 100: 101176.
42 42 Pucci A (2018). Luminescent solar concentrators based on aggregation induced emission. Israel J. Chem. 58(8): 837–44.
43 43 Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005). Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg. Chem. 33(6): 415–25.
44 44 Haidekker MA, Theodorakis EA (2010). Environment‐sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 4(11). https://doi.org/10.1186/1754‐1611‐4‐11.
45 45 Mustafic A, Huang H‐M, Theodorakis EA, Haidekker MA (2010). Imaging of flow patterns with fluorescent molecular rotors. J. Fluoresc. 20(5): 1087–98.
46 46 Koenig M, Bottari G, Brancato G, Barone V, Guldi DM, Torres T (2013). Unraveling the peculiar modus operandi of a new class of solvatochromic fluorescent molecular rotors by spectroscopic and quantum mechanical methods. Chem. Sci. 4(6): 2502–11.
47 47 Haidekker MA, Akers W, Lichlyter D, Brady TP, Theodorakis EA (2005). Sensing of flow and shear stress using fluorescent molecular rotors. Sens. Lett. 3(1–1): 42–8.
48 48 Zhou F, Shao J, Yang Y, Zhao J, Guo H, Li X, et al. (2011). Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states. Eur. J. Org. Chem. 2011(25): 4773–87, S/1–S/70.
49 49 Martini G, Martinelli E, Ruggeri G, Galli G, Pucci A (2015). Julolidine fluorescent molecular rotors as vapour sensing probes in polystyrene films. Dye. Pigm. 113(0): 47–54.
50 50 Calvino C, Neumann L, Weder C, Schrettl S (2017). Approaches to polymeric mechanochromic materials. J. Polym. Sci. A Polym. Chem. 55(4): 640–52.
51 51 Herbert KM, Schrettl S, Rowan SJ, Weder C (2017). 50th anniversary perspective: solid‐state multistimuli, multiresponsive polymeric materials. Macromolecules 50(22): 8845–70.
52 52 Seeboth A, Loetzsch D, Ruhmann R, Muehling O (2014). Thermochromic polymers‐function by design. Chem. Rev. 114(5): 3037–68.
53 53 Minei P, Pucci A (2016). Fluorescent vapochromism in synthetic polymers. Polym. Int. 65(6): 609–20.
54 54 Pucci A (2019). Mechanochromic fluorescent polymers with aggregation‐induced emission features. Sensors (Swit.) 19(22).
55 55 La DD, Bhosale SV, Jones LA, Bhosale SV (2018). Tetraphenylethylene‐based AIE‐active probes for sensing applications. ACS Appl. Mater. Interf. 10(15): 12189–216.
56 56 Iasilli G, Battisti A, Tantussi F, Fuso F, Allegrini M, Ruggeri G, et al. (2014). Aggregation‐induced emission of tetraphenylethylene in styrene‐based polymers. Macromol. Chem. Phys. 215(6): 499–506.
57 57 Taniguchi R, Yamada T, Sada K, Kokado K (2014). Stimuli‐responsive fluorescence of AIE elastomer based on PDMS and tetraphenylethene. Macromolecules 47(18): 6382–8.
58 58 Wu Y, Hu J, Huang H, Li J, Zhu Y, Tang B, et al. (2014). Memory chromic polyurethane with tetraphenylethylene. J. Polym. Sci. B Polym. Phys. 52(2): 104–10.
59 59 Robb MJ, Li W, Gergely RCR, Matthews CC, White SR, Sottos NR, et al. (2016). A robust damage‐reporting strategy for polymeric materials enabled by aggregation‐induced emission. ACS Cent. Sci. 2(9): 598–603.
60 60 Caruso MM, Blaiszik BJ, Jin H, Schelkopf SR, Stradley DS, Sottos NR, et al. (2010). Robust, double‐walled microcapsules for self‐healing polymeric materials. ACS Appl. Mater. Interf. 2(4): 1195–9.
61 61 Song YK, Kim B, Lee TH, Kim JC, Nam JH, Noh SM, et al. (2017). Fluorescence detection of microcapsule‐type self‐healing, based on aggregation‐induced emission. Macromol. Rapid Commun. 38(6): 1600657.
62 62 Calvino C, Guha A, Weder C, Schrettl S (2018). Self‐calibrating mechanochromic fluorescent polymers based on encapsulated excimer‐forming dyes. Adv. Mater. 30(19): 1704603.
63 63 Song YK, Kim B, Lee TH, Kim SY, Kim JC, Noh SM, et al. (2018). Monitoring fluorescence colors to separately identify cracks and healed cracks in microcapsule‐containing self‐healing coating. Sens. Actuat. B Chem. 257: 1001–8.
64 64 Zhao W, He Z, Peng Q, Lam JWY, Ma H, Qiu Z, et al. (2018). Highly sensitive switching of solid‐state luminescence by controlling intersystem crossing. Nat. Commun. 9(1): 3044.
65 65 Qiu Z, Zhao W, Cao M, Wang Y, Lam JWY, Zhang Z, et al. (2018). Dynamic visualization of stress/strain distribution and fatigue crack propagation by an organic mechanoresponsive AIE luminogen. Adv. Mat. 30(44): 1803924.
66 66 Carlotti M, Gullo G, Battisti A, Martini F, Borsacchi S, Geppi M, et al. (2015). Thermochromic polyethylene films doped with perylene chromophores: experimental evidence and methods for characterization of their phase behaviour. Polym. Chem. 6(21): 4003–12.
67 67 Sorgi C, Martinelli E, Galli G, Pucci A (2018). Julolidine‐labelled fluorinated block copolymers for the development of two‐layer films with highly sensitive vapochromic response. Sci. Chin. Chem. 61(8): 947–56.
68 68 Bao S, Wu Q, Qin W, Yu Q, Wang J, Liang G, et al. (2015). Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. Polym. Chem. 6(18): 3537–42.
69 69 Qiu Z, Chu EKK, Jiang M, Gui C, Xie N, Qin W, et al. (2017). A simple and sensitive method for an important physical parameter: reliable measurement of glass transition temperature by AIEgens. Macromolecules 50(19): 7620–7.
70 70 Han T, Gui C, Lam JWY, Jiang M, Xie N, Kwok RTK, et al. (2017). High‐contrast visualization and differentiation of microphase separation in polymer blends by fluorescent AIE probes. Macromolecules 50(15): 5807–15.
71 71 Wu J‐L, Zhang C, Qin W, Quan D‐P, Ge M‐L, Liang G‐D (2019). Thermoresponsive fluorescent semicrystalline polymers decorated with aggregation induced emission luminogens. Chin. J. Polym. Sci. 37(4): 394–400.
72 72 Jenkin ME, Saunders SM, Pilling MJ (1997). The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atm. Env. 31(1): 81–104.
73 73 Kim YM, Harrad S, Harrison RM (2001). Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ. Sci. Technol. 35(6): 997–1004.
74 74 Germain ME, Knapp MJ (2009). Optical explosives detection: from color changes to fluorescence turn‐on. Chem. Soc. Rev. 38(9): 2543–55.
75 75 Salinas Y, Martinez‐Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, et al. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 41(3): 1261–96.
76 76 Sun X, Wang Y, Lei Y (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev. 44(22): 8019–61.
77 77 Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006). Colorimetric sensor arrays for volatile organic compounds. Anal. Chem. 78(11): 3591–600.
78 78 Rakow NA, Suslick KS (2000). A colorimetric sensor array for odour visualization. Nature 406(6797): 710–3.
79 79 Thomas SW, Joly GD, Swager TM (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107(4): 1339–86.
80 80