Predicting Heart Failure. Группа авторов

Читать онлайн.
Название Predicting Heart Failure
Автор произведения Группа авторов
Жанр Медицина
Серия
Издательство Медицина
Год выпуска 0
isbn 9781119813033



Скачать книгу

Graphite, 29QDsQuantum Dots, 28SEMScanning Electron Microscopy, 28SERSSurface-Enhanced Raman Scattering, 12SPEsScreen-Printed Electrodes, 28SPGEsScreen-Printed Gold Electrodes, 28SPRSurface Plasmon Resonance, 12SPRiSurface Plasmon Resonance Imaging, 12sST2Soluble Suppressor of Tumorgenicity 2, 8TGTriglycerides, 9TNF-α,Tumor Necrosis Factor-alpha, 7

       Chapter 4

ACAlternative Current, 9
BSNBody Sensor Network, 2 CE Counter Electrode, 5
CMTCoupled-Mode Theory, 12
EDASEuropean Aeronautic Defense and Space Company, 10
EMElectromagnetic Interference, 11
EMFElectromagnetic Field, 9
HPFHigh-Pass Filter, 17
IoTInternet of Things, 2
LPFLow Pass Filter, 17
MEMSMicro-Electromechanical Systems, 4
MPTMicrowave Power Transmission, 8
REReference Electrode, 5
RFRadio Frequency, 3
SHMStructural Health Supervising, 2
SoCSystem on a Chip, 5
VSWRVoltage Standing Wave Ratio, 24
WBANWireless Body Area Network, 2
WEWorking Electrode, 5

       Chapter 5

BCGBallistocardiography, 13
BLUEBedside Lung Ultrasound, 10
BNPB-type Natriuretic Peptide, 14
C.A.USECardiac Arrest Ultrasound Exam, 10
CHFChronic Heart Failure, 2
DNNDeep Neural Network, 12
ECGElectrocardiography, 3
EVLWExtravascular Lung Water, 8
FALLSFluid Administration Limited by Lung Sonography, 10
GPSGlobal Positioning System, 6
HFHeart failure, 2
ICDImplantable Cardioverter Defibrillator, 12
LuCUSLung and Cardiac Ultrasound, 10
LUSLung Ultrasound, 8
LVLeft Ventricular, 7
MEMSMicroelectromechanical System, 6
MFCCsMel-frequency Cepstral Coefficients, 12
NT-proBNPAmino-terminal Pro-B-type Natriuretic Peptide, 14
PAPulmonary Arterial, 7
Phonocardiogram, 12
PPGPhotoplethysmogram, 14
RCTsRandomized Control Trials, 15
ReDSRemote Dielectric Sensing Technology, 5
RPMRemote Patient Monitoring, 15
RVRight Ventricular, 7
SCGSeismocardiography, 12

       Chapter 6

ACMAll-cause Mortality, 8
AIArtificial Intelligence, 3, 8
ANNArtificial Neural Networks, 3,12
AUCArea Under the Curve, 9
CADCoronary Artery Disease, 8
CCTACardiac Computed Tomographic Angiography, 8
CMRCardiac Magnetic Resonance, 12
CNNConvolutional Neural Networks, 12
DLDeep learning, 12
ECGElectrocardiogram, 9
FDAFood and Drug Administration, 17
FFRFractional Flow Reserve, 9
FRSFramingham Risk Score, 8
GANGenerative Adversarial Networks, 11
GANGenerative Adversarial Networks, 3
HFpEFHeart Failure with Preserved Ejection Fraction, 10
HMMHidden Markov Model, 15
LASSOLeast Absolute Shrinkage and Selection Operator, 3
LVLeft Ventricle, 9
LVEFLeft Ventricular Ejection Fraction, 12
MDIModified Duke Index, 8
MFRMyocardial Flow Reserve, 9
MLMachine Learning, 3
MPIMyocardial Perfusion Imaging, 15
MPSMyocardial Perfusion Scan, 9
NERNames Entity Recognition, 15
NLPNatural Language Processing, 15
POSPart of Speech, 15
PSAParsing or Syntactic Analysis, 15
RNNRecurrent Neural Networks, 12
SISSegment Involvement Score, 8
SSSSegment Stenosis Score, 8
STESpeckle-tracking Echocardiography, 11
SVMsSupport Vector Machines, 8
TPDTotal Perfusion Deficit, 15
TTETransthoracic Echocardiogram, 12

       Chapter 7

DTDecision Tree, 2
K-NNK-Nearest Neighbor, 5
LDALinear Discriminant Analysis, 2
MAFIAMaximal Frequent Itemset Algorithm, 4
NBNaïve Bayes, 2
NNNeural Networks, 4
RFRandom Forest, 2
SVMSupport Vector Machine, 2

       Chapter 8

AUPRCArea Under Precision Recall curve, 10
AUROCArea Under ROC Curve, 10
BNPBrain Natriuretic Peptide, 4
CNNConvolutional Neural Networks, 7
DAEDenoising Autoencoder, 7
DBNsDeep Belief Networks, 7
DTDecision Tree, 7
ECGElectrocardiogram, 3
EHRElectronic Health Records, 5
EMBEndomyocardial Biopsy, 7
ESCEuropean Society of Cardiology, 4
GBMGradient-boosted Model, 11
GRU RNNsGated Recurrent Unit Recurrent Neural Networks, 9
GWTG-HFGet With The Guidelines-Heart Failure, 11
HFHeart Failure, 2
KNNsK-nearest Neighbors, 7
LADLeft Atrial Dimension, 10
LRLogistic Regression, 11
LSTMLong Short-Term Memory, 7
MAGGICMeta-Analysis Global Group in Chronic, 11
MLMachine Learning, 2
ReLURectified Linear Unit, 8
RETAINREverse Time AttentIoN Model, 9
RFRandom Forest, 8
RNNrecurrent Neural Networks, 7
ROIRegions of Interests, 8
RPMRemote Patient Monitoring, 5
SVMSupport Vector Machine, 7
TANTree-augmented Naive Bayesian, 11

       Chapter 9

AFAtrial Fibrillation, 9
AFLAtrial Flutter, 10
AUCArea Under the Roc Curve, 8
BNBayes Network, 31
CARTClassification and Regression Trees, 15
CFSCorrelation-based Feature Selection, 31
CMRCardiac Magnetic Resonance, 6
CNNConvolutional Neural Network, 9
CTCAComputed Tomography Coronary Angiography, 6
DLDeep Learning, 8
DNNDeep Neural Network, 9
DUNsDeep Unified Networks, 20
ECGElectrocardiogram, 6
EFEjection Fraction, 5
EFFECTEnhanced Feedback for Effective Cardiac Treatment, 10
EHRElectronic Health Record, 8
ELMExtreme Learning Machine, 10
ESCEuropean Society of Cardiology, 6
GDSGeneralized Discriminant Analysis, 16
GLMGeneralized Linear Model, 23
HFHeart Failure, 1
HFmrEFHF with Mid-range or Mildly Reduced EF, 5
HFpEFHeart Failure with Preserved Ejection Fraction, 5
HFrEFHeart Failure with Reduced Ejection Fraction, 5
HRVHeart Rate Variability, 9
K-NNK-nearest Neighbor, 8
LGELate Gadolinium Enhancement, 6
LMTLogistic Model Trees, 31
LRLogistic Regression, 8
LS-SVMLeast Square SVM, 9
LSTMLong Short-term