Название | Handbook of Aggregation-Induced Emission, Volume 1 |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119642893 |
References
1 1 Birks, J. B. (1970). Photophysics of Aromatic Molecules. London: Wiley.
2 2 Mei, J., Hong, Y., Lam, J. W. et al. (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Advanced Materials 26 (31): 5429–5479.
3 3 Lim, M. H. and Lippard, S. J. (2007). Metal‐based turn‐on fluorescent probes for sensing nitric oxide. Accounts of Chemical Research 40 (1): 41–51.
4 4 Tang, C. W. and Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters 51 (12): 913–915.
5 5 Luo, J., Xie, Z., Lam, J. W. Y. et al. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chemical Communications 381 (18): 1740–1741.
6 6 Hu, R., Lam, J. W. Y., Liu, Y. et al. (2013). Aggregation‐induced emission of tetraphenylethene‐hexaphenylbenzene adducts: effects of twisting amplitude and steric hindrance on light emission of nonplanar fluorogens. Chemistry A European Journal 19 (18): 5617–5624.
7 7 Tong, H., Hong, Y., Dong, Y. et al. (2006). Fluorescent “light‐up” bioprobes based on tetraphenylethylene derivatives with aggregation‐induced emission characteristics. Chemical Communications ( 35): 3705–3707.
8 8 An, B.‐K., Kwon, S.‐K., Jung, S.‐D. et al. (2002). Enhanced emission and its switching in fluorescent organic nanoparticles. Journal of the American Chemical Society 124 (48): 14410–14415.
9 9 Kokado, K. and Chujo, Y. (2009). Polytriazoles with aggregation‐induced emission characteristics: synthesis by click polymerization and application as explosive chemosensors. Macromolecules 42 (5): 1421–1424.
10 10 Wang, M., Zhang, G., Zhang, D. et al. (2010). Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation‐induced emission feature. Journal of Materials Chemistry 20 (10): 1858–1867.
11 11 Chen, J., Law, C. C. W., Lam, J. W. Y. et al. (2003). Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1‐substituted 2,3,4,5‐tetraphenylsiloles. Chemistry of Materials 15 (7): 1535–1546.
12 12 Mei, J., Leung, N. L. C., Kwok, R. T. K. et al. (2015). Aggregation‐induced emission: together we shine, united we soar! Chemical Reviews 115 (21):11718–11940.
13 13 Feng, H.‐T., Yuan, Y.‐X., Xiong, J.‐B. et al. (2018). Macrocycles and cages based on tetraphenylethylene with aggregation‐induced emission effect. Chemical Society Reviews 47 (19): 7452–7476.
14 14 Hong, Y., Lam, J. W. Y., and Tang, B. Z. (2011). Aggregation‐induced emission. Chemical Society Reviews 40 (11): 5361−5388.
15 15 Kwok, R. T. K., Leung, C. W. T., Lam, J. W. Y. et al. (2015). Biosensing by luminogens with aggregation‐induced emission characteristics. Chemical Society Reviews 44 (33): 4228−4238.
16 16 Hu, R., Leung, N. L., and Tang, B. Z. (2014). AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews 43 (13): 4494−4562.
17 17 Hong, Y., Lam, J. W. Y., and Tang, B. Z. (2009). Aggregation‐induced emission: phenomenon, mechanism and applications. Chemical Communications 45 ( 29):4332−4353.
18 18 Hu, M., Yuan, Y., Wang, W. et al. (2020). Chiral recognition and enantiomer excess determination based on emission wavelength change of AIEgen rotor. Nature Communications 11: 161.
19 19 Huang, J., Sun, N., Yang, J. et al. (2012). Benzene‐cored fluorophores with TPE peripheries: facile synthesis, crystallization‐induced blue‐shifted emission, and efficient blue luminogens for non‐doped OLEDS. Journal of Materials Chemistry 22 (24): 12001−12007.
20 20 Huang, J., Sun, N., Dong, Y. et al. (2013). Similar or totally different: the control of conjugation degree through minor structural modifications, and deep‐blue aggregation‐induced emission luminogens for non‐doped OLEDS. Advanced Functional Materials 23 (18): 2329−2337.
21 21 Yuan, Y.‐X., Xiong, J.‐B., Luo, J. et al. (2019). The self‐assembly and chiroptical properties of tetraphenylethylene dicycle tetracholesterol with an AIE effect. Journal of Materials Chemistry C 7 (27): 8236–8243.
22 22 Geddes, C. D. and Lakopwicz, J. R. (2005). Advanced Concepts in Fluorescence Sensing. Norwell: Springer.
23 23 Jares‐Erijman, E. A. and Jovin, T. M. (2003). Fret imaging. Nature Biotechnology 21 (11): 1387−1395.
24 24 Liu, Y., Tao, X., Wang, F. et al. (2007). Intermolecular hydrogen bonds induce highly emissive excimers: enhancement of solid‐state luminescence. Journal of Physical Chemistry C 111 (17): 6544−6549.
25 25 An, B.‐K., Lee, D.‐S., Lee, J.‐S. et al. (2000). Microchannel networks for nanowire patterning. Journal of the American Chemical Society 122 (41): 10232−10233.
26 26 Li, Y., Li, F., Zhang, H. et al. (2007). Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo (para‐phenylene vinylene): a key factor for aggregation‐induced emission. Chemical Communications 45 ( 3): 231−233.
27 27 Ren, Y., Kan, W. H., Henderson, M. A. et al. (2011). External‐stimuli responsive photophysics and liquid crystal properties of self‐assembled “phosphole‐lipids”. Journal of the American Chemical Society 133 (42): 17014−17026.
28 28 Xie, Z., Yang, B., Li, F. et al. (2005). Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid‐state luminescence efficiency. Journal of the American Chemical Society 127 (41): 14152−14153.
29 29 Zhang, J., Xu, B., Chen, J. et al. (2014). An organic luminescent molecule: what will happen when the “butterflies” come together? Advanced Materials 26 (5): 739−745.
30 30 Yuan, Y.‐X., Wu, B.‐X., Xiong, J.‐B. et al. (2019). Exceptional aggregation‐induced emission from one totally planar molecule. Dyes and Pigments 170: 107556.
31 31 Luo, J., Song, K., Gu, F. et al. (2011). Switching of non‐helical overcrowded tetrabenzoheptafulvalene derivatives. Chemical Science 2 (10): 2029–2034.
32 32 Leung, N. L., Xie, N., Yuan, W. et al. (2014). Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chemistry–A European Journal, 20 (47): 15349–15353.
33 33 Zhao, Z., Zheng, X., Du, L. et al. (2019). Non‐aromatic annulene‐based aggregation‐induced emission system via aromaticity reversal process. Nature Communications 10 (1): 1–10.
34 34 Yao, L., Zhang, S., Wang, R. et al. (2014). Highly efficient near‐infrared organic light‐emitting diode based on a butterfly‐shaped donor–acceptor chromophore with strong solid‐state fluorescence and a large proportion of radiative excitons. Angewandte Chemie International Edition 53 (8): 2119–2123.
35 35 Liu, J., Meng, Q., Zhang, X. et al. (2013). Aggregation‐induced emission enhancement based on 11, 11, 12, 12,‐tetracyano‐9, 10‐anthraquinodimethane. Chemical Communications 49 (12): 1199–1201.
36 36 Kamaldeep, K. S. n., Kaur, S., Bhalla, V. et al. (2014). Pentacenequinone derivatives for preparation of gold nanoparticles: facile synthesis and catalytic application. Journal of Materials Chemistry A 2 (22): 8369–8375.
37 37 Banal, J. L., White, J. M., Ghiggino, K. P. et al. (2014). Concentrating aggregation‐induced fluorescence in planar waveguides: a proof‐of‐principle. Scientific Reports 4 (1): 1–5.
38 38 Irie, M., Fukaminato, T., Matsuda, K. et al. (2014). Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews 114 (24): 12174–12277.
39 39 Yuan, Y. X. and Zheng,