Название | Polar Organometallic Reagents |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119448846 |
2 Chapter 2Figure 2.1 Common oligomeric structures adopted by the organolithium reagent...Figure 2.2 Part of the infinite solid‐state ladder structure of PhLi 2.Scheme 2.1 Disruption of the polymerization of MeLi tetramers 1 by common Le...Figure 2.3 Molecular structures of n‐BuLi 7 (left) and t‐BuLi 8 ...Scheme 2.2 Disruption of the n‐BuLi hexamer by polydentate Lewis donor...Scheme 2.3 Deprotonation of PMDETA by coordinated n‐BuLi producing 16....Figure 2.4 Distortion to the central Li2C2 rings of dimeric t‐BuLi and...Scheme 2.4 Donor dependence of n‐BuLi reactivity towards benzene and t...Scheme 2.5 Contrasting solvent‐dependent reactivity of BuLi with the heteroc...Figure 2.5 Polymeric structures of trimethylsilylmethylsodium 24 (top) and b...Scheme 2.6 Effect of TMEDA on structures of trimethylsilylmethylsodium and b...Figure 2.6 Common secondary amines employed for metallation chemistry.Scheme 2.7 Simplified bonding in metal‐amide oligomers, using a cyclodimer a...Figure 2.7 Molecular structures of LiDA 35, LiHMDS 36, and LiTMP 37a/37b....Figure 2.8 Representative example of higher‐order and lower‐order structures...Figure 2.9 Influence of the agostic interactions on homo‐, hetero‐ and solva...Figure 2.10 LiCKOR metallation of toluene.Scheme 2.8 Lithiation of sodium 2,4,6‐trimethylphenoxide to yield the hetero...Figure 2.11 Molecular structure of trimetallic alkoxide complex 59 (K = dark...Scheme 2.9 Contrasting reactivity of LiCKOR superbase in the presence and ab...Figure 2.12 Molecular structures of [(THF)2Li(μ‐Cl)2Mg(THF)TMP] 60 (left) an...Scheme 2.10 Synthesis of heteroleptic sodium zincate 62 by metallation of be...Scheme 2.11 Contrasting reactivity of a homometallic zinc reagent and a bime...Scheme 2.12 Contrasting reactivity of homoleptic bimetallic HMDS complexes w...Scheme 2.13 Proposed mechanism of addition of diarylmethanes to alkenes cata...Scheme 2.14 Examples of the metallation scope of LiZnt‐Bu2(TMP).Figure 2.13 Molecular structure of [(THF)Li(TMP)(t‐Bu)Zn(t‐Bu)] Scheme 2.15 Computed transition states for addition versus metallation react...Scheme 2.16 Stoichiometry dependent variable reactivity of LiZn(t‐Bu)2(TMP) ...Scheme 2.17 Two‐step mechanism of substrate deprotonation with mixed amido/a...Scheme 2.18 Experimental evidence for alkyl dependence upon two‐step mechani...Scheme 2.19 Disproportionation of anisolyl lithium zincate and the molecular...Figure 2.14 Propagation of EtZn(Et)(TMP)Li 75 into a polymer.Scheme 2.20 Synthetic approach and molecular structures of [EtZn{C10H6C(=O)NFigure 2.15 Molecular structures of [{(C5H5)Fe(C5H4)}2Zn(TMEDA)] 79 (left) a...Scheme 2.21 Cascade of reactions upon deprotonating ferrocene with dialkyl‐a...Figure 2.16 Molecular structure of [(TMEDA)Na(TMP)(t‐Bu)Zn(t‐Bu)...Scheme 2.22 Stoichiometry dependent mono‐ and di‐deprotonation of aromatic s...Scheme 2.23 Meta‐deprotonation of N,N‐dimethylaniline using sodium TMP–zinca...Figure 2.17 Molecular structure of [(3‐Me‐C6H4CN)2Na(TMEDA)2]+ [{6‐Zn(t‐...Scheme 2.24 Calculated two‐step mechanism for zincation of benzene with bisa...Scheme 2.25 Dimetallation of thiophene to form novel zincocycle 90.Scheme 2.26 Zincation of benzoylferrocene showing metallated intermediate 91Scheme 2.27 Zincation of THF with sodium