Enzyme-Based Organic Synthesis. Cheanyeh Cheng

Читать онлайн.
Название Enzyme-Based Organic Synthesis
Автор произведения Cheanyeh Cheng
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9781118995150



Скачать книгу

or OYEs 1–3 mediated biotransformations to prepare (S)‐α‐halo‐β‐arylpropionic acid derivatives in high e.e. and with good yields. The fermentation medium promotes ester hydrolysis, but the isolated enzymes preserve the ester functionality (Scheme 2.43). Particularly, when aromatic ring was substituted by an EWG, high e.e. and conversion values were observed [185].

Chemical reaction depicting asymmetric bioreduction of citraconic acid dimethylester via a coupled-substrate system. Chemical reaction depicting bY fermentations and OYEs 1–3 mediated bioreductions of substrates 1–6. Chemical reaction depicting the reduction of gamma,delta-double bond of the conjugated lactone in securinine.

      1 1 Molinari, F. (2006). Curr. Org. Chem. 10: 1247–1263.

      2 2 Bouonomenna, M.G. and Drioli, E. (2008). Org. Process Res. Dev. 12: 982–988.

      3 3 Jia, A.Z., Lou, L.L., Zhang, C. et al. (2009). J. Mol. Catal. A 306: 123–129.

      4 4 Celik, D., Bayraktar, E., and Mehmetoglu, D. (2004). Biochem. Eng. J. 17: 5–13.

      5 5 Molinari, F., Gandolfi, R., Aragozzini, F. et al. (1999). Enzyme Microb. Technol. 25: 729–735.

      6 6 Wu, J., Wang, J.‐L., Li, M.‐H. et al. (2010). Bioresour. Technol. 101: 8936–8941.

      7 7 Orbegozo, T., Lavandera, I., Fabian, W.M.F. et al. (2009). Tetrahedron 65: 6805–6809.

      8 8 Sagiroglu, A. and Yavuz, M.O. (2005). Artif. Cells Blood Substit. Biotechnol. 33: 343–355.

      9 9 Norouzian, D., Akbarzadeh, A., Inanlou, D.N. et al. (2003). Enzyme Microb. Technol. 33: 150–153.

      10 10 Carballeira Rodríguez, J.D., García‐Burgos, C., Quezada Alvarez, M.A. et al. (2004). Biotechnol. Bioeng. 87: 632–640.

      11 11 Jia, X., Xu, Y., and Li, Z. (2011). ACS Catal. 1: 591–596.

      12 12 Hilterhaus, L. and Liese, A. (2007). Adv. Biochem. Eng. Biotechnol. 105: 133–173.

      13 13 Oedman, P., Wessjohann, L.A., and Bornscheuer, U.T. (2005). J. Org. Chem. 70: 9551–9555.

      14 14 Hirscher, T., Gocke, D., Fernandez, M. et al. (2005). Tetrahedron 61: 7378–7383.

      15 15 Scheid, G., Kuit, W., Ruijter, E. et al. (2004). Eur. J. Org. Chem. 2004: 1063–1074.

      16 16 Nestl, B.M., Voss, C.V., Bodlenner, A. et al. (2007). Appl. Microbiol. Biotechnol. 76: 1001–1008.

      17 17 Demir, A.S., Hamamci, H., Sesenoglu, O. et al. (2001). Tetrahedr. Asymm. 12: 1953–1956.

      18 18 Smalleridge, A.J., Trewhalla, M.A., Maurice, A., and Wilkinson, A.K. (2003). Patent WO 2003018531 A1 20030306.

      19 19 Rosche, B., Breuer, M., Hauer, B., and Rogers, P.L. (2004). Biotechnol. Bioeng. 86: 788–794.

      20 20 Engel, S., Vyazmensky, M., Geresh, H. et al. (2003). Biotechnol. Bioeng. 83: 640–833.

      21 21 Cheng, Y., Zhang, F., Rano, T.A. et al. (2002). Bioorg. Med. Chem. Lett. 12: 2419–2422.

      22 22 Lunardi, I., Conceicao, G.J.A., Moran, P.J.S., and Rodrigues, J.A.R. (2005). Tetrahedr. Asymm. 16: 2515–2519.

      23 23 Mitsukura, K., Sato, Y., Yoshida, T., and Nagasawa, T. (2004). Biotechnol. Lett. 26: 1643–1648.

      24 24 Tanaka, M., Hirokane, Y., Mitsui, R., and Tsuno, T. (2001). J. Biosci. Bioeng. 91: 267–271.

      25 25 Vicente, C., Fontaniella, B., Millanes, A.M. et al. (2003). Int. J. Cosmet. Sci. 25: 25–29.

      26 26 Seshardri, R., Lamm, A.S., Khare, A., and Rosazza, J.P.N. (2008). Enzyme Microb. Technol. 43: 486–494.

      27 27 Hamme, J.D., Singh, A., and Ward, O.P. (2003). Microbiol. Mol. Boil. Rev. 67: 503–549.

      28 28 Beilen, J.B., Li, Z., Duetz, W.A. et al. (2003). Oil Gas Sci. Technol. 58: 427–440.

      29 29 Labinger, J.A. (2004). J. Mol. Catal. A 220: 27–35.

      30 30 Ayala, M. and Torres, E. (2004). Appl. Catal. A 272: 1–13.

      31 31 van Beilen, J.B. and Funhoff, E.G. (2005). Curr. Opin. Biotechnol. 16: 308–314.

      32 32 Bernhardt, R. (2006). J. Bacteriol. 124: 128–145.

      33 33 Funhoff, E.G. and van Beilen, J.B. (2007). Biocatal. Biotransformation 25: 186–193.

      34 34 Kawakami, N., Shoji, O., and Watanabe, Y. (2011). Angew. Chem. Int. Ed. 50: 5315–5318.

      35 35 Weber, E., Seifert, A., Antonovici, M. et al. (2011). Chem. Commun. 47: 944–946.

      36 36 Bordeaux, M., Galarneau, A., Fajula, F., and Drone, J. (2011). Angew. Chem. Int. Ed. 50: 2075–2079.

      37 37 Scheps, D., Malca, S.H., Hoffmann, H. et al. (2011). Org. Biomol. Chem. 9: 6727–6733.

      38 38 van Beilen, J.B., Funhoff, E.G., van Loon, A. et al. (2006). Appl. Environ. Microbiol. 72: 59–65.

      39 39 Funhoff, E.G., Bauer, U., Garcia‐Rubio, I. et al. (2006). J. Bacteriol. 188: 5220–5227.

      40 40 Funhoff, E.G., Salzmann, J., Bauer, U. et al. (2007). Enzyme Microb. Technol. 40: 806–812.

      41 41 Dubbels, B.L., Sayavedra‐Soto, L.A., and Arp, D.J. (2007). Microbiology 153: 1808–1816.

      42 42 Craft, D.L., Madduri, K.M., Eshoo, M., and Wilson, C.R. (2003). Appl. Environ. Microbiol. 69: 5983.

      43 43 Tani, A., Ishige, T., Sakai, Y., and Kato, N. (2001). J. Bacteriol. 183: 1819.

      44 44 Feng, L., Wang, W., Cheng, J. et al. (2007). Proc. Natl. Acad. Sci. U. S. A. 104: 5602.

      45 45 Maeng, J.H., Sakai, Y., Tani, Y., and Kato, N. (1996). J. Bacteriol. 178: 3695.

      46 46 Li, L., Liu, X., Yang, W. et al. (2008). J. Mol. Biol. 376: 453–465.

      47 47 Throne‐Holst, M., Markussen, S., Winnberg, A. et al. (2006). Appl. Microbiol. Biotechnol. 72: 353–360.

      48 48 Peter, S., Kinne, M., Wang, X. et al. (2011). FEBS J. 278: 3667–3675.

      49 49