Название | Как мы видим? Нейробиология зрительного восприятия |
---|---|
Автор произведения | Ричард Маслэнд |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 2020 |
isbn | 978-5-9614-7248-6 |
Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.
Введение
Это книга о том, как мы видим. Мыслители издавна пытались объяснить феномен зрения, но их представления, как показывают современные исследования, были наивными: ведь глаз – это не просто съемочный аппарат, а нечто гораздо большее. Наша способность узнавать лица друзей кажется элементарной и естественной – настолько, что древние даже не рассматривали ее как предмет исследования, – но на деле в ней нет ничего очевидного. Чтобы дать исчерпывающий ответ на вопрос, что такое зрение, надо понять не только то, как функционируют наши глаза. Необходимо также знать, как наш мозг воспринимает и осмысляет внешний мир.
Как это ни парадоксально, мозг очень медлителен: нейроны и синаптические связи между ними функционируют в миллионы раз медленнее современных компьютеров. Однако он превосходит компьютеры в большинстве перцептивных задач. Мы можем за тысячные доли секунды узнать своего ребенка в толпе мальчиков и девочек на детской площадке. Как наш мозг это делает? Каким образом он перерабатывает и осмысляет потоки элементарных стимулов – пятен света, вибраций воздуха, давлений на кожу и т. п.? На сегодняшний день у нас есть только проблески понимания, но от того, что уже известно, захватывает дух.
Я пришел в нейронауку в 25 лет – еще до того, как она стала самостоятельной официальной дисциплиной, – и сегодня увлечен ею так же страстно, как и тогда. Я наблюдал за развитием нейронауки и принимал в нем непосредственное участие. Эту книгу я написал, чтобы рассказать вам о том, как работает зрение – от сетчатки до зрительных центров в височной коре мозга. Но еще я хочу пригласить вас в научное путешествие, чтобы вы узнали, как работают нейробиологи, не из скучных научных статей или ток-шоу, а увидели это своими глазами – побывав в настоящих исследовательских лабораториях. Наконец, я познакомлю вас с несколькими ключевыми фигурами в этой области.
Мы шаг за шагом рассмотрим процесс зрительного восприятия. Вы узнаете, что мы видим мир вовсе не таким, какой он есть на самом деле: наша сетчатка разбивает его на множество отдельных фрагментов (сигналов) и посылает их в мозг по отдельным каналам, каждый из которых несет информацию об одном небольшом аспекте изображения. Я объясню, как нейроны сетчатки выполняют это перекодирование и почему. Затем мы проследуем за этими сигналами в мозг и посмотрим, как из них формируется восприятие.
В мозге по-прежнему еще множество тайн, но мы уже смогли прийти к важному выводу: бо́льшая часть мозга работает не как система фиксированных двухточечных соединений наподобие телефонной сети, а как паутина бесчисленных нейронных связей, то есть как нейронная сеть. В наши дни нейронные сети обычно ассоциируются с компьютерами, но их идея впервые была выдвинута более полувека назад прозорливым канадским нейробиологом Дональдом Хеббом. Несколько лет спустя эту теорию подхватили специалисты в области теории вычислительных систем. В последующие десятилетия нейронные сети то входили в моду, то теряли популярность, но более совершенные компьютеры в конечном итоге привели к рождению новой области искусственного интеллекта (ИИ), известной как машинное обучение. Разработчики ИИ показали, что компьютерные нейронные сети могут научиться впечатляющим вещам, и тем самым побудили нейробиологов вновь посмотреть на головной мозг сквозь призму нейронных сетей. Сегодня у нас есть замечательный альянс нейробиологии и компьютерных наук, в котором каждая дисциплина служит источником идей для другой.
Действительно ли мозг использует нейронные сети для восприятия и осмысления мира? Функционирует ли он согласно принципам, применяющимся в «машинном обучении»? Ответ, судя по всему, да – и мозг делает это намного лучше компьютеров. Безусловно, компьютеры поражают нас некоторыми своими способностями – не только игрой в шахматы, но и выполнением других более сложных задач. Но по большому счету они как цирковые пони, умеющие делать только один трюк. И даже самые простые системы ИИ требуют большого количества оборудования и, как следствие, большого количества энергии. В отличие от них, наш скромный по размерам мозг способен выполнять огромное разнообразие задач, потребляя при этом меньше энергии, чем ночник для чтения. С этой точки зрения компьютеры очень примитивны, поэтому цель – сделать их хотя бы немного похожими на человеческий мозг.
Как это давно понял Дональд Хебб, нейронная сеть с фиксированными соединениями неспособна