Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной. Ричард Докинз

Читать онлайн.
Название Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной
Автор произведения Ричард Докинз
Жанр Биология
Серия Династия (Corpus)
Издательство Биология
Год выпуска 1987
isbn 978-5-17-086374-7



Скачать книгу

равной вероятностью оказаться любая точка Страны биоморф. А значит, шансы попасть по чистой случайности в какую-то конкретную точку – скажем, на лисицу – легко вычислить. Они составят, попросту говоря, единицу против общего количества всех биоморф в пространстве. Как видите, мы опять начинаем оперировать астрономическими числами. Имеется девять генов, каждый из которых может принимать любое из 19 численных значений. Следовательно, общее количество биоморф, до которых можно было бы допрыгнуть за один ход, – это число 19, помноженное само на себя девять раз, то есть 19 в 9-й степени. Это составляет где-то полтриллиона. Мелочь по сравнению с азимовским “гемоглобиновым числом”, но все же, я бы сказал, немало. Если, взяв за исходную биоморфу насекомое, вы начнете, как свихнувшаяся блоха, скакать полтриллиона раз подряд, то можно ожидать, что когда-нибудь вы попадете и на лисицу.

      Как же все это помогает нам понять реальную эволюцию? На приведенном примере мы в очередной раз убеждаемся в важности постепенных, пошаговых преобразований. Некоторые из эволюционистов отрицали необходимость такого градуализма для эволюции. Наши вычисления с биоморфами показывают нам, что хотя бы одна причина для того, чтобы изменения непременно были постепенными и пошаговыми, существует точно. Когда я говорю, что эволюция способна совершить скачок от насекомого до одной из ближайших к нему биоморф, но не может перескочить сразу на скорпиона, я хочу сказать буквально следующее. Если бы эти скачки были действительно случайными, тогда в том, чтобы одним махом допрыгнуть от насекомого до скорпиона, не было бы абсолютно ничего невозможного. Согласитесь, что тогда это было бы возможно ровно так же, как и прыжок от насекомого к одной из его непосредственных соседок. Но при этом вероятность попасть на какую угодно другую из имеющихся в пространстве биоморф тоже была бы в точности такой же. Тут-то и загвоздка. Когда общее количество биоморф – полтриллиона и ни одна из них не является более вероятным пунктом назначения, чем другие, то шансы попасть на любую конкретную биоморфу малы настолько, что ими можно пренебречь.

      Обратите внимание, что допущение о наличии мощного неслучайного “давления отбора” нам здесь не поможет. Пусть даже, удачно попав на скорпиона, вы сорвете большой куш – это не имеет значения. Шансы такого события по-прежнему составляют один к половине триллиона. Но если вместо того, чтобы скакать, вы будете идти шаг за шагом и каждый раз, шагнув в нужном направлении, получать копеечное вознаграждение, тогда вы доберетесь до скорпиона за очень короткий срок. Возможно, и не за самый короткий, не за 30 поколений, но тем не менее очень быстро. Двигаясь прыжками, вы теоретически могли бы получить свой выигрыш быстрее – всего за один ход. Но в связи с ничтожно малой вероятностью такой удачи единственная реально осуществимая возможность – это последовательность шажков, каждый из которых прибавляет к накопленному успеху своих предшественников дополнительную