Название | Автоутопия. Будущее машин |
---|---|
Автор произведения | Джон Бентли |
Жанр | Техническая литература |
Серия | Разговоры о будущем |
Издательство | Техническая литература |
Год выпуска | 2019 |
isbn | 978-5-17-120995-7 |
Недообучение – обратная проблема. Система ИИ не всегда улавливает нужные связи. К примеру, она может не распознать обочину дороги или не понять, пешеход перед ней или велосипедист, неверно истолковав данные с камеры и лидара. Обычно для борьбы с недообучением в систему загружают новые данные или больше практической информации о взаимосвязи между системой ИИ и реальным миром. В компаниях, занимающихся разработкой беспилотных автомобилей, тысячи сотрудников вручную снабжают изображения тегами с полезной информацией. Такое дополнение нейронных сетей фактическими данными позволяет устранить недообучение.
Другая проблема – обобщение. Если человек знает, как выглядят мышь и песчанка, то без труда скажет, что хомяк находится где-то между ними – еще один млекопитающий грызун. Искусственному интеллекту такая задача кажется сложной. Ему тяжело взять что-то знакомое и на основе этого создать нечто новое, которое при этом обладает смыслом. ИИ или вовсе не распознает новый объект, или выдает постоянно меняющиеся описания. Именно поэтому чат-боты пока плохо поддерживают беседу. Нет ощущения, будто они понимают хоть что-то. Чат-боты просто подбирают более-менее подходящую фразу из тех, что слышали прежде.
Искусственный интеллект в действии. Процессор Nvidia выделяет разноцветной обводкой и другими способами те объекты, которые удалось распознать: машины, пешеходов и велосипедистов.
Эксперты по ИИ считают программное обеспечение беспилотных автомобилей чем-то вроде черного ящика. Входные данные известны. Выходные – тоже. Но как система приходит от одного к другому, остается загадкой. Не вполне понятно, как работают алгоритмы или как «думает» машина. В компании Nvidia попытались визуализировать это с точки зрения автопилота. На изображении, полученном с датчиков автомобиля, они выделили объекты, которые влияют на принятие решений. Результаты обнадеживают: процессор фокусируется на контурах дороги, разметке и припаркованных автомобилях. На то же обращали бы внимание и обычные водители.
«Мы не обучали сеть обращать внимание на эти аспекты напрямую. В этом кардинальное отличие», – написал в блоге Урс Мюллер, главный архитектор ПО для беспилотных автомобилей в Nvidia.
Это не исчерпывающее объяснение принципов, по которым нейронная сеть принимает решения, но с чего-то нужно начинать. Мюллер замечает: «Я не могу объяснить все требования, которые предъявляю автомобилю, но могу показать их, а сеть продемонстрирует, что она усвоила». Некоторые убеждены, что пассажирам следует показывать визуализацию. Так они смогут понять, как думает машина, что повысит доверие к автопилоту.
В дополнение к нейронным сетям программное обеспечение беспилотных автомобилей включает в себя карту в высоком разрешении, которая постоянно обновляется по беспроводной сети. Это трехмерные карты, где информация отображается с точностью до сантиметра (к примеру,