Техническая литература

Различные книги в жанре Техническая литература

Microwave-Enhanced Polymer Chemistry and Technology

Dariusz Bogdal

While polymer technology forms one of the largest areas of application of microwave technology, and the methods and procedures used therein are among the most developed, there is still a relative lack of published information on the subject. Microwave-Enhanced Polymer Chemistry and Technology describes novel approaches to polymer processing using microwave technologies. Coverage includes background and scientific data, analysis of processes and product properties in comparison with existing technology, applications that are being used in various approaches, and the status of current research. Features of microwave irradiation, i.e., solvent-free reactions, low waste, energy efficiency, high yield, short reaction time, and possible use of alternative solvents, can play an important role in the development of green chemistry methods.

DNA Interactions with Polymers and Surfactants

Rita Dias

A broad overview of the interaction of DNA with surfactants and polymers Due to the potential benefits of biotechnology, interest in the interaction between DNA and surfactants and polymers has become increasingly significant. Now, DNA Interactions with Polymers and Surfactants provides an extensive, up-to-date overview of the subject, giving readers a basis for understanding the factors leading to complexation between DNA and different cosolutes, including metal ions, polyelectrolytes, spermine, spermidine, surfactants and lipids, and proteins. Topical coverage includes: Polyelectrolytes, physico-chemical aspects and biological significance Solution behavior of nucleic acids Single DNA molecules: compaction and decompaction Interaction of DNA with surfactants and cationic polymers Interactions of histones with DNA DNA-DNA interactions The hydration of DNA-amphiphile complexes DNA-surfactant/lipid complexes at liquid interfaces DNA and DNA-surfactant complexes at solid surfaces The role of correlation forces for DNA-cosolute interactions Simulations of polyions Cross-linked DNA gels and gel particles DNA as an amphiphilic polymer Lipid-DNA interactions Covering both theoretical and practical aspects of the subject, DNA Interactions with Polymers and Surfactants is an ideal resource for chemists and biochemists working in gene and DNA delivery research in industry and academia, as well as for cell biologists, chemical engineers, molecular biologists, and development biologists in the pharmaceutical industry.

Chemical Reactor Design, Optimization, and Scaleup

E. Nauman Bruce

The classic reference, now expanded and updated Chemical Reactor Design, Optimization, and Scaleup is the authoritative sourcebook on chemical reactors. This new Second Edition consolidates the latest information on current optimization and scaleup methodologies, numerical methods, and biochemical and polymer reactions. It provides the comprehensive tools and information to help readers design and specify chemical reactors confidently, with state-of-the-art skills. This authoritative guide: Covers the fundamentals and principles of chemical reactor design, along with advanced topics and applications Presents techniques for dealing with varying physical properties in reactors of all types and purposes Includes a completely new chapter on meso-, micro-, and nano-scale reactors that addresses such topics as axial diffusion in micro-scale reactors and self-assembly of nano-scale structures Explains the method of false transients, a numerical solution technique Includes suggestions for further reading, problems, and, when appropriate, scaleup or scaledown considerations at the end of each chapter to illustrate industrial applications Serves as a ready reference for explained formulas, principles, and data This is the definitive hands-on reference for practicing professionals and an excellent textbook for courses in chemical reactor design. It is an essential resource for chemical engineers in the process industries, including petrochemicals, biochemicals, microelectronics, and water treatment.

Science and Technology of Polymer Nanofibers

Anthony Andrady L.

Discover new and emerging applications of polymer nanofibers alongside the basic underlying science and technology. With discussions exploring such practical applications as filters, fabrics, sensors, catalysts, scaffolding, drug delivery, and wound dressings, the book provides polymer scientists and engineers with a comprehensive, practical «how-to» reference. Moreover, the author offers an expert assessment of polymer nanofibers' near-term potential for commercialization. Among the highlights of coverage is the book's presentation of the science and technology of electrospinning, including practical information on how to electrospin different polymer systems.

Microelectronic Applications of Chemical Mechanical Planarization

Yuzhuo Li

An authoritative, systematic, and comprehensive description of current CMP technology Chemical Mechanical Planarization (CMP) provides the greatest degree of planarization of any known technique. The current standard for integrated circuit (IC) planarization, CMP is playing an increasingly important role in other related applications such as microelectromechanical systems (MEMS) and computer hard drive manufacturing. This reference focuses on the chemical aspects of the technology and includes contributions from the foremost experts on specific applications. After a detailed overview of the fundamentals and basic science of CMP, Microelectronic Applications of Chemical Mechanical Planarization: * Provides in-depth coverage of a wide range of state-of-the-art technologies and applications * Presents information on new designs, capabilities, and emerging technologies, including topics like CMP with nanomaterials and 3D chips * Discusses different types of CMP tools, pads for IC CMP, modeling, and the applicability of tribometrology to various aspects of CMP * Covers nanotopography, CMP performance and defect profiles, CMP waste treatment, and the chemistry and colloidal properties of the slurries used in CMP * Provides a perspective on the opportunities and challenges of the next fifteen years Complete with case studies, this is a valuable, hands-on resource for professionals, including process engineers, equipment engineers, formulation chemists, IC manufacturers, and others. With systematic organization and questions at the end of each chapter to facilitate learning, it is an ideal introduction to CMP and an excellent text for students in advanced graduate courses that cover CMP or related semiconductor manufacturing processes.

Macromolecules Containing Metal and Metal-Like Elements, Volume 8

Martel Zeldin

This series provides a useful, applications-oriented forum for the next generation of macromolecules and materials. Applications include non-linear optical materials, specialty magnetic materials, liquid crystals, anticancer and antiviral drugs, treatment of arthritis, antibacterial drugs, antifouling materials, treatment of certain vitamin deficiencies, electrical conductors and semiconductors, piezoelectronic materials, electrodes, UV absorption applications, super-strength materials, special lubricants and gaskets, selective catalytic and multi-site catalytic agents.

Frontiers in Transition Metal-Containing Polymers

Ian Manners

A detailed, up-to-date review of transition metal-containing polymers Promising advances in the electrical, optical, magnetic, biological, and catalytic properties that metal-containing polymers possess have led to notable expansion in the field of transition metal-containing polymers. Frontiers in Transition Metal-Containing Polymers provides a comprehensive, up-to-date review of the synthesis, properties, and applications of transition metal-containing polymers, including an overview of the historical development of these types of polymers. Written by the leading researchers in the field, this thorough volume covers the routes to organometallic and coordination polymers, as well as characterization and applications of transition metal-containing monomers and polymers. Other topics discussed include: Metallo-supramolecular coordination polymers based on nitrogen ligands Coordination polymers based on phosphorus ligands Polypeptide-based metallobiopolymers and DNA-based metallopolymers Metallodendrimers Self-assembly of metal-containing block copolymers Applications including drug delivery, optics, molecular devices, sensors, conductive materials, and more

Physics and Applications of CVD Diamond

Satoshi Koizumi

Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs. Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is essential reading for everyone working in environments that involve conventional electronics, biotechnology, quantum computing, quantum cryptography, superconductivity and light emission from highly excited excitonic systems.

Radiowaves and Polaritons in Anisotropic Media

Roland Tarkhanyan H.

Divided into four main sections, this monograph presents the theory of propagation and excitation of volume and surface electromagnetic waves in anisotropic polar and nonpolar conducting crystals, together with the effects of external magnetic and strong electric fields. It also investigates the spectrum of bulk, as well as surface phonon-plasmon polaritons in uniaxial semiconductors, and electromagnetic instabilities leading to the generation and amplification of radiowaves. Additional topics include total transmission, magnon-plasmon polaritons, and the influence of hot 2D carriers. This unparalleled systematic treatment includes novel research on special topics in the field, such as the peculiarities of the polaritons in anisotropic semiconductors in the presence of mobile charge carriers.

Scaling Issues and Design of MEMS

Salvatore Baglio

This accessible volume delivers a complete design methodology for microelectromechanical systems (MEMS). Focusing on the scaling of an autonomous micro-system, it explains the real-world problems and theoretical concepts of several different aspects inherent to the miniaturization of sensors and actuators. It reports on the analysis of dimensional scaling, the modelling, design and experimental characterization of a wide range of specific devices and applications, including: temperature microsensors based on an integrated complementary metal-oxide-semiconductor (CMOS) thermocouple; mechanical sensors; inductive microsensors for the detection of magnetic particles; electrostatic, thermal and magnetic actuators. With an original approach, this informative text encompasses the entire range of themes currently at the forefront of MEMS, including an analysis of the importantissue of energy sources in MEMS. In addition, the book explores contemporary research into the design of complete MEMS with a case study on colonies of microbots. Scaling Issues and Design of MEMS aims to improve the reader’s basic knowledge on modelling issues of complex micro devices, and to encourage new thinking about scaling effects. It will provide support for practising engineers working within the defence industry and will also be of welcome interest to graduate students and researchers with a background in electronic engineering, physics, chemistry, biology and materials science.