Cyber Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to cyber security metrics and measure and related technologies that meet security needs. Specific applications to web services, the banking and the finance sector, and industrial process control systems are discussed.
Transportation Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to security challenge of transportation systems in the USA and elsewhere, performance measures, including coverage of critical supply chain protection and emergency evacuation.
Since the middle of the 20th Century yield design approaches have been identified with the lower and upper bound theorem of limit analysis theory – a theory associated with perfect plasticity. This theory is very restrictive regarding the applicability of yield design approaches, which have been used for centuries for the stability of civil engineering structures. This book presents a theory of yield design within the original “equilibrium/resistance” framework rather than referring to the theories of plasticity or limit analysis; expressing the compatibility between the equilibrium of the considered structure and the resistance of its constituent material through simple mathematical arguments of duality and convex analysis results in a general formulation, which encompasses the many aspects of its implementation to various stability analysis problems. After a historic outline and an introductory example, the general theory is developed for the three-dimensional continuum model in a versatile form based upon simple arguments from the mathematical theory of convexity. It is then straightforwardly transposed to the one-dimensional curvilinear continuum, for the yield design analysis of beams, and the two-dimensional continuum model of plates and thin slabs subjected to bending. Field and laboratory observations of the collapse of mechanical systems are presented along with the defining concept of the multi-parameter loading mode. The compatibility of equilibrium and resistance is first expressed in its primal form, on the basis of the equilibrium equations and the strength domain of the material defined by a convex strength criterion along with the dual approach in the field of potentially safe loads, as is the highlighting of the role implicitly played by the theory of yield design as the fundamental basis of the implementation of the ultimate limit state design (ULSD) philosophy with the explicit introduction of resistance parameters. Contents 1. Origins and Topicality of a Concept. 2. An Introductory Example of the Yield Design Approach. 3. The Continuum Mechanics Framework. 4. Primal Approach of the Theory of Yield Design. 5. Dual Approach of the Theory of Yield Design. 6. Kinematic Exterior Approach. 7. Ultimate Limit State Design from the Theory of Yield Design. 8. Optimality and Probability Approaches of Yield Design. 9. Yield Design of Structures. 10. Yield Design of Plates: the Model. 11. Yield Design of Plates Subjected to Pure Bending. About the Authors Jean Salençon is Emeritus Professor at École polytechnique and École des ponts et chaussées, ParisTech, France. Since 2009 he has been a member of the Administrative Board of CNRS (Paris, France). He has received many awards including the Légion d’Honneur (Commander), Ordre National du Mérite (Officer) and Palmes Académiques (Commander). His research interests include structure analysis, soil mechanics and continuum mechanics.
According to the NACFAM (National Council for Advanced Manufacturing USA) Sustainable Manufacturing is defined as the creation of manufactured products that use processes that are non-polluting, conserve energy and natural resources, and are economically sound and safe for employees, communities, and consumers. The book covers Sustainable Manufacturing techniques such as materials and manufacturing for renewable energies; clean manufacturing technology; ecological manufacturing; energy-efficient manufacturing; remanufacturing; recycling of materials; environmentally conscious design and manufacturing processes; sustainable advanced manufacturing systems; manufacturability in sustainable product design; education and training for sustainable manufacturing.
This book introduces and details the key facets of Combined Analysis – an x-ray and/or neutron scattering methodology which combines structural, textural, stress, microstructural, phase, layer, or other relevant variable or property analyses in a single approach. The text starts with basic theories related to diffraction by polycrystals and some of the most common combined analysis instrumental set-ups are detailed. Also discussed are microstructures of powder diffraction profiles; quantitative phase analysis from the Rietveld analysis; residual stress analysis for isotropic and anisotropic materials; specular x-ray reflectivity, and the various associated models.
Lithography is an extremely complex tool – based on the concept of “imprinting” an original template version onto mass output – originally using relatively simple optical exposure, masking, and etching techniques, and now extended to include exposure to X-rays, high energy UV light, and electron beams – in processes developed to manufacture everyday products including those in the realms of consumer electronics, telecommunications, entertainment, and transportation, to name but a few. In the last few years, researchers and engineers have pushed the envelope of fields including optics, physics, chemistry, mechanics and fluidics, and are now developing the nanoworld with new tools and technologies. Beyond the scientific challenges that are endemic in this miniaturization race, next generation lithography techniques are essential for creating new devices, new functionalities and exploring new application fields. Nanolithography is the branch of nanotechnology concerned with the study and application of fabricating nanometer-scale structures − meaning the creation of patterns with at least one lateral dimension between the size of an individual atom and approximately 100 nm. It is used in the fabrication of leading-edge semiconductor integrated circuits (nanocircuitry) or nanoelectromechanical systems (NEMS). This book addresses physical principles as well as the scientific and technical challenges of nanolithography, covering X-ray and NanoImprint lithography, as well as techniques using scanning probe microscopy and the optical properties of metal nanostructures, patterning with block copolymers, and metrology for lithography. It is written for engineers or researchers new to the field, and will help readers to expand their knowledge of technologies that are constantly evolving.
This book focuses on green networking, which is an important topic for the scientific community composed of engineers, academics, researchers and industrialists working in the networking field. Reducing the environmental impact of the communications infrastructure has become essential with the ever increasing cost of energy and the need for reducing global CO2 emissions to protect our environment. Recent advances and future directions in green networking are presented in this book, including energy efficient networks (wired networks, wireless networks, mobile networks), adaptive networks (cognitive radio networks, green autonomic networking), green terminals, and industrial research into green networking (smart city, etc.).
This book presents the principles and techniques of program specialization – a general method to make programs faster (and possibly smaller) when some inputs can be known in advance. As an illustration, it describes the architecture of Tempo, an offline program specializer for C that can also specialize code at runtime, and provides figures for concrete applications in various domains. Technical details address issues related to program analysis precision, value reification, incomplete program specialization, strategies to exploit specialized program, incremental specialization, and data specialization. The book, that targets both researchers and software engineers, also opens scientific and industrial perspectives.
In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and mature clinical application areas. It also presents the major approaches in terms of design and control including man-machine interaction modes. A large state of the art is presented and many examples from the literature are included and thoroughly discussed. It aims to provide both a broad and summary view of this very active domain as well as keys to understanding the evolutions of the domain and to prepare for the future. An insight to clinical evaluation is also proposed, and the book is finished with a chapter on future developments for intra-body robots.
This book addresses artificial materials including photonic crystals (PC) and metamaterials (MM). The first part is devoted to design concepts: negative permeability and permittivity for negative refraction, periodic structures, transformation optics. The second part concerns PC and MM in stop band regime: from cavities, guides to high impedance surfaces. Abnormal refraction, less than one and negative, in PC and MM are studied in a third part, addressing super-focusing and cloaking. Applications for telecommunications, lasers and imaging systems are also explored.