Due to the rise in petroleum prices as well as increasing environmental concerns, there is a need to develop biochemicals and bioproducts that offer realistic alternatives to their traditional counterparts; this book will address the lack of a centralized resource of information on lubricants and greases from renewable sources, and will be useful to a wide audience in industry and academia. It is based on 20 years of research and development at the UNI-NABL Center, and discusses the various types of vegetable oils available, comparing their characteristics, properties and benefits against those of typical petroleum oils as well as discussing common evaluation tests and giving examples and case studies of successful applications of biobased lubricants and greases. Whilst scientific and engineering research data is included, the book is written in an accessible manner and is illustrated throughout. Focuses on an industrial application of lubrication technology undergoing current explosive growth in the global market. Includes a detailed review of the material benefits of plant-based lubricants that include a better viscosity index and lubricity even at extreme temperatures, lower flammability due to higher flash points and lower pour points. Covers the basic chemistry of vegetable oils as well as their profiles for use in lubricants and greases and environmental benefits. Includes examples and case studies of where vegetable-based lubricants have been successfully employed in industry applications.
An overview of the tremendous potential of organic electronics, concentrating on those emerging topics and technologies that will form the focus of research over the next five to ten years. The young and energetic team of editors with an excellent research track record has brought together internationally renowned authors to review up-and-coming topics, some for the first time, such as organic spintronics, iontronics, light emitting transistors, organic sensors and advanced structural analysis. As a result, this book serves the needs of experienced researchers in organic electronics, graduate students and post-doctoral researchers, as well as scientists active in closely related fields, including organic chemical synthesis, thin film growth and biomaterials. Cover Figure: With kind permission of Matitaccia.
The book deals with the structural design of temporary excavation support and the dimensioning of excavation support walls and their individual components. Completely calculated examples explain the application of the procedures described in the book.
In most cases of civil engineering development, a range of alternative schemes meeting project goals are feasible, so some form of evaluation must be carried out to select the most appropriate to take forward. Evaluation criteria usually include the economic, environmental and social contexts of a project as well as the engineering challenges, so engineers must be familiar with the processes and tools used. The second edition of Engineering Project Appraisal equips students with the understanding and analytical tools to carry out effective appraisals of alternative development schemes, using both economic and non-economic criteria. The building blocks of economic appraisal are covered early, leading to techniques such as net present worth, internal rate of return and annual worth. Cost Benefit Analysis is dealt with in detail, together with related methods such as Cost Effectiveness and the Goal Achievement Matrix. The text also details three multi-criteria models which have proved useful in the evaluation of proposals in the transportation, solid waste, energy and water resources fields: the Simple Additive Weighting (SAW) Model, the Analytic Hierarchy Process (AHP) technique and Concordance Analysis. There is a full discussion dealing with risk and uncertainty in these models. With many worked examples and case studies, Engineering Project Appraisal is an essential text for both undergraduate and postgraduate students on professional civil engineering courses, and it is expected that students on planning and construction management courses will find it a valuable addition to their reading.
An invaluable guide for problem solving in mass transfer operations This book takes a highly pragmatic approach to providing the principles and applications of mass transfer operations by offering a valuable, easily accessible guide to solving engineering problems. Both traditional and novel mass transfer processes receive treatment. As with all of the books in this series, emphasis is placed on an example-based approach to illustrating key engineering concepts. The book is divided into two major parts. It starts with the principles underlying engineering problems—showing readers how to apply general engineering principles to the topic of mass transfer operations. It then goes on to provide step-by-step guidance for traditional mass transfer operations, including distillation, absorption and stripping, and adsorption, plus novel mass transfer processes. Essential topics for professional engineering exams are also covered. Geared towards chemical, environmental, civil, and mechanical engineers working on real-world industrial applications, Mass Transfer Operations for the Practicing Engineer features: Numerous sample problems and solutions with real-world applications Clear, precise explanations on how to carry out the basic calculations associated with mass transfer operations Coverage of topics from the ground up for readers without prior knowledge of the subject Overview of topics relevant to the ABET (Accreditation Board for Engineering and Technology) for those taking the Professional Engineering (PE) exams Appendix containing relevant mass transfer operation charts and tables
In high power, high voltage electronics systems, a strategy to manage short timescale energy imbalances is fundamental to the system reliability. Without a theoretical framework, harmful local convergence of energy can affect the dynamic process of transformation, transmission, and storage which create an unreliable system. With an original approach that encourages understanding of both macroscopic and microscopic factors, the authors offer a solution. They demonstrate the essential theory and methodology for the design, modeling and prototyping of modern power electronics converters to create highly effective systems. Current applications such as renewable energy systems and hybrid electric vehicles are discussed in detail by the authors. Key features: offers a logical guide that is widely applicable to power electronics across power supplies, renewable energy systems, and many other areas analyses the short-scale (nano-micro second) transient phenomena and the transient processes in nearly all major timescales, from device switching processes at the nanoscale level, to thermal and mechanical processes at second level explores transient causes and shows how to correct them by changing the control algorithm or peripheral circuit includes two case studies on power electronics in hybrid electric vehicles and renewable energy systems Practitioners in major power electronic companies will benefit from this reference, especially design engineers aiming for optimal system performance. It will also be of value to faculty staff and graduate students specializing in power electronics within academia.
This comprehensive, up-to-date text delivers the latest must-have information on species new to aquaculture and documents the most important technological innovations of the past decade. Every aspect of the growing field has been addressed with coverage spanning recent technological development, new species, recent changes and global trends. More specifically, you will find information on the culture of species such as barramundi, cobia, dolphin fish, spiny lobsters, slipper lobsters, mud crabs, penaeid prawns, Nile tilapia, yellow king fish, abalone, sea cucumber and sea urchin, seaweed, ornamentals and Indian major carps, fugu, mud skippers, cephalopods and blue fin tuna. The technological innovations and introduction of new species into aquaculture are critical to the evolution of the global aquaculture industry; an industry which is rapidly becoming one of the fastest growing in the world, having experienced huge advances across its many and diverse facets. Recent Advances and New Species in Aquaculture focuses explicitly on the ever-changing face of aquaculture, providing core scientific and commercially useful information on the remarkable growth in aquaculture production and in the advancement of new technological tools. Written by many well respected international figures and drawn together and edited by Ravi Fotedar & Bruce Phillips, this exciting book is an essential purchase for anyone involved in or about to enter into the aquaculture industry. Libraries in all universities and research establishments where aquaculture, fish biology, aquatic and environmental sciences and fisheries are studied and taught will find this an important addition to their shelves. Recent Advances and New Species in Aquaculture is sure to become a key companion for all those studying aquaculture and a valuable source of reference for all personnel involved in the industry.
The design of mechanical structures with improved and predictable durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading experts in the field, this book (which is complementary to Fatigue of Materials and Structures: Application to Damage and Design, also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major classes of materials or to different types of fatigue damage, thereby providing overall coverage of the field. The book deals with crack initiation, crack growth, low-cycle fatigue, gigacycle fatigue, shorts cracks, fatigue micromechanisms and the local approach to fatigue damage, corrosion fatigue, environmental effects and variable amplitude loadings, and will be an important and much used reference for students, practicing engineers and researchers studying fracture and fatigue in numerous areas of mechanical, structural, civil, design, nuclear, and aerospace engineering as well as materials science.
In recent years, control systems have become more sophisticated in order to meet increased performance and safety requirements for modern technological systems. Engineers are becoming more aware that conventional feedback control design for a complex system may result in unsatisfactory performance, or even instability, in the event of malfunctions in actuators, sensors or other system components. In order to circumvent such weaknesses, new approaches to control system design have emerged which can tolerate component malfunctions while maintaining acceptable stability and performance. These types of control systems are often known as fault-tolerant control systems (FTCS). More precisely, FTCS are control systems which possess the ability to accommodate component failure automatically. Analysis and Synthesis of Fault-Tolerant Control Systems comprehensively covers the analysis and synthesis methods of fault tolerant control systems. It unifies the methods for developing controllers and filters for a wide class of dynamical systems and reports on the recent technical advances in design methodologies. MATLAB® is used throughout the book, to demonstrate methods of analysis and design. Key features: • Provides advanced theoretical methods and typical practical applications • Provides access to a spectrum of control design methods applied to industrial systems • Includes case studies and illustrative examples • Contains end-of-chapter problems Analysis and Synthesis of Fault-Tolerant Control Systems is a comprehensive reference for researchers and practitioners working in this area, and is also a valuable source of information for graduates and senior undergraduates in control, mechanical, aerospace, electrical and mechatronics engineering departments.
Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.