The continued advancement of MEMS (micro-electro-mechanical systems) complexity, performance, commercial exploitation and market size requires an ever-expanding graduate population with state-of-the-art expertise. Understanding MEMS: Principles and Applications provides a comprehensive introduction to this complex and multidisciplinary technology that is accessible to senior undergraduate and graduate students from a range of engineering and physical sciences backgrounds. Fully self-contained, this textbook is designed to help students grasp the key principles and operation of MEMS devices and to inspire advanced study or a career in this field. Moreover, with the increasing application areas, product categories and functionality of MEMS, industry professionals will also benefit from this consolidated overview, source of relevant equations and extensive solutions to problems. Key features: Details the fundamentals of MEMS, enabling readers to understand the basic governing equations and know how they apply at the micron scale. Strong pedagogical emphasis enabling students to understand the fundamentals of MEMS devices. Self-contained study aid featuring problems and solutions. Book companion website hosts Matlab and PSpice codes and viewgraphs.
Thorough and up-to-date, this book presents recent developments in this exciting research field. To begin with, the text covers the fabrication of chiral nanomaterials via various synthesis methods, including electron beam lithography, ion beam etching, chemical synthesis and biological DNA directed assembly. This is followed by the relevant theory and reaction mechanisms, with a discussion of the characterization of chiral nanomaterials according to the optical properties of metal nanoparticles, semiconductor nanocrystals, and nanoclusters. The whole is rounded off by a summary of applications in the field of catalysis, sensors, and biomedicine. With its comprehensive yet concise coverage of the whole spectrum of research, this is invaluable reading for senior researchers and entrants to the field of nanoscience and materials science.
This book concerns the analysis and design of induction heating of poor electrical conduction materials. Some innovating applications such as inductive plasma installation or transformers, thermo inductive non-destructive testing and carbon-reinforced composite materials heating are studied. Analytical, semi-analytical and numerical models are combined to obtain the best modeling technique for each case. Each model has been tested with experimental results and validated. The principal aspects of a computational package to solve these kinds of coupled problems are described. In the first chapter, the mathematical tools for coupled electromagnetic and thermal phenomena are introduced. In Chapter 2, these tools are used to analyze a radio frequency inductive plasma installation. The third chapter describes the methodology of designing a low frequency plasma transformer. Chapter 4 studies the feasibility of the thermo inductive technique for non-destructive testing and the final chapter is dedicated to the use of induction heating in the lifecycle of carbon-reinforced composite materials. Contents 1. Thermal and Electromagnetic Coupling, Javad Fouladgar, Didier Trichet and Brahim Ramdane. 2. Simplified Model of a Radiofrequency Inductive Thermal Plasma Installation, Javad Fouladgar and Jean-Pierre Ploteau. 3. Design Methodology of A Very Low-Frequency Plasma Transformer, Javad Fouladgar and Souri Mohamed Mimoune. 4. Non Destructive Testing by Thermo-Inductive Method, Javad Fouladgar, Brahim Ramdane, Didier Trichet and Tayeb Saidi. 5. Induction Heating of Composite Materials, Javad Fouladgar, Didier Trichet, Samir Bensaid and Guillaume Wasselynck
Filling the gap in the market dedicated to PLL structures for power systems Internationally recognized expert Dr. Masoud Karimi-Ghartemani brings over twenty years of experience working with PLL structures to Enhanced Phase-Locked Loop Structures for Power and Energy Applications, the only book on the market specifically dedicated to PLL architectures as they apply to power engineering. As technology has grown and spread to new devices, PLL has increased in significance for power systems and the devices that connect with the power grid. This book discusses the PLL structures that are directly applicable to power systems using simple language, making it easily digestible for a wide audience of engineers, technicians, and graduate students. Enhanced phase-locked loop (EPLL) has become the most widely utilized architecture over the past decade, and many books lack explanation of the structural differences between PLL and EPLL. This book discusses those differences and also provides detailed instructions on using EPLL for both single-phase applications and three-phase applications. The book’s major topics include: A basic look at PLL and its standard structure A full explanation of EPLL EPLL extensions and modifications Digital implementation of EPLL Extensions of EPLL to three-phase structures Dr. Karimi-Ghartemani provides basic analysis that helps readers understand each of the structures presented without requiring complicated mathematical proofs. His book is filled with illustrated examples and simulations that connect theory to the real world, making Enhanced Phase-Locked Loop Structures for Power and Energy Applications an ideal reference for anyone working with inverters, rectifiers, and related technologies.
Green Biocatalysis presents an exciting green technology that uses mild and safe processes with high regioselectivity and enantioselectivity. Bioprocesses are carried out under ambient temperature and atmospheric pressure in aqueous conditions that do not require any protection and deprotection steps to shorten the synthetic process, offering waste prevention and using renewable resources. Drawing on the knowledge of over 70 internationally renowned experts in the field of biotechnology, Green Biocatalysis discusses a variety of case studies with emphases on process R&D and scale-up of enzymatic processes to catalyze different types of reactions. Random and directed evolution under process conditions to generate novel highly stable and active enzymes is described at length. This book features: A comprehensive review of green bioprocesses and application of enzymes in preparation of key compounds for pharmaceutical, fine chemical, agrochemical, cosmetic, flavor, and fragrance industries using diverse enzymatic reactions Discussion of the development of efficient and stable novel biocatalysts under process conditions by random and directed evolution and their applications for the development of environmentally friendly, efficient, economical, and sustainable green processes to get desired products in high yields and enantiopurity The most recent technological advances in enzymatic and microbial transformations and cuttingedge topics such as directed evolution by gene shuffling and enzyme engineering to improve biocatalysts With over 3000 references and 800 figures, tables, equations, and drawings, Green Biocatalysis is an excellent resource for biochemists, organic chemists, medicinal chemists, chemical engineers, microbiologists, pharmaceutical chemists, and undergraduate and graduate students in the aforementioned disciplines.
New edition of the successful textbook updated to include new material on UAVs, design guidelines in aircraft engine component systems and additional end of chapter problems Aircraft Propulsion, Second Edition follows the successful first edition textbook with comprehensive treatment of the subjects in airbreathing propulsion, from the basic principles to more advanced treatments in engine components and system integration. This new edition has been extensively updated to include a number of new and important topics. A chapter is now included on General Aviation and Uninhabited Aerial Vehicle (UAV) Propulsion Systems that includes a discussion on electric and hybrid propulsion. Propeller theory is added to the presentation of turboprop engines. A new section in cycle analysis treats Ultra-High Bypass (UHB) and Geared Turbofan engines. New material on drop-in biofuels and design for sustainability is added to refl ect the FAA’s 2025 Vision. In addition, the design guidelines in aircraft engine components are expanded to make the book user friendly for engine designers. Extensive review material and derivations are included to help the reader navigate through the subject with ease. Key features: General Aviation and UAV Propulsion Systems are presented in a new chapter Discusses Ultra-High Bypass and Geared Turbofan engines Presents alternative drop-in jet fuels Expands on engine components' design guidelines The end-of-chapter problem sets have been increased by nearly 50% and solutions are available on a companion website Presents a new section on engine performance testing and instrumentation Includes a new 10-Minute Quiz appendix (with 45 quizzes) that can be used as a continuous assessment and improvement tool in teaching/learning propulsion principles and concepts Includes a new appendix on Rules of Thumb and Trends in aircraft propulsion Aircraft Propulsion, Second Edition is a must-have textbook for graduate and undergraduate students, and is also an excellent source of information for researchers and practitioners in the aerospace and power industry.
Corrosion costs billions of dollars to each and every single economy in the world. Corrosion is a chemical process, and it is crucial to understand the dynamics from a chemical perspective before proceeding with analyses, designs and solutions from an engineering aspect. The opposite is also true in the sense that scientists should take into consideration the contemporary aspects of the issue as it relates to the daily life before proceeding with specifically designed theoretical solutions. Corrosion Engineering is advised to both theoreticians and practitioners of corrosion alike. Corrosion engineering is a joint discipline associated primarily with major engineering sciences such as chemical engineering, civil engineering, petroleum engineering, mechanical engineering, metallurgical engineering, mining engineering among others and major fundamental sciences such as sub-disciplines of physical, inorganic and analytical chemistry as well as physics and biology, such as electrochemistry, surface chemistry, surface physics, solution chemistry, solid state chemistry and solid state physics, microbiology, and others. Corrosion Engineering is a must-have reference book for the engineer in the field that covers the corrosion process with its contemporary aspects with respect to both of its scientific and engineering aspects. It is also a valuable textbook that could be used in an engineering or scientific course on corrosion at the university level.
Aerospace propulsion devices embody some of the most advanced technologies, ranging from materials, fluid control, and heat transfer and combustion. In order to maximize the performance, sophisticated testing and computer simulation tools are developed and used. Aerospace Propulsion comprehensively covers the mechanics and thermal-fluid aspects of aerospace propulsion, starting from the fundamental principles, and covering applications to gas-turbine and space propulsion (rocket) systems. It presents modern analytical methods using MATLAB and other advanced software and includes essential elements of both gas-turbine and rocket propulsion systems. Gas turbine coverage includes thermodynamic analysis, turbine components, diffusers, compressors, turbines, nozzles, compressor-turbine matching, combustors and afterburners. Rocket coverage includes chemical rockets, electrical rockets, nuclear and solar sail. Key features: Both gas-turbine and rocket propulsion covered in a single volume Presents modern analytical methods and examples Combines fundamentals and applications, including space applications Accompanied by a website containing MATLAB examples, problem sets and solutions Aerospace Propulsion is a comprehensive textbook for senior undergraduate graduate and aerospace propulsion courses, and is also an excellent reference for researchers and practicing engineers working in this area.
As aquaculture continues to grow at a rapid pace, understanding the engineering behind aquatic production facilities is of increasing importance for all those working in the industry. Aquaculture engineering requires knowledge of the many general aspects of engineering such as material technology, building design and construction, mechanical engineering, and environmental engineering. In this comprehensive book now in its second edition, author Odd-Ivar Lekang introduces these principles and demonstrates how such technical knowledge can be applied to aquaculture systems. Review of the first edition: 'Fish farmers and other personnel involved in the aquaculture industry, suppliers to the fish farming business and designers and manufacturers will find this book an invaluable resource. The book will be an important addition to the shelves of all libraries in universities and research institutions where aquaculture, agriculture and environmental sciences are studied and taught.' Aquaculture Europe 'A useful book that, hopefully, will inspire successors that focus more on warm water aquaculture and on large-scale mariculture such as tuna farming.' Cision
Shelf life, a term recognised in EU/UK food legislation, may be defined as the period of time for which a food product will remain safe and fit for use, provided that it is kept in defined storage conditions. During this period, the product should retain its desired sensory, chemical, physical, functional and microbiological characteristics, as well as accurately comply with any nutritional information printed on the label. ?Shelf life? therefore refers to a number of different aspects; each food product has a microbiological shelf life, a chemical shelf life, and a sensory (or organoleptic) shelf life. These categories reflect the different ways in which a food product will deteriorate over time. Ultimately the shelf life of a food product is intended to reflect the overall effect of these different aspects. Shelf life has always been an important facet of industrial food preparation and production, as food and drink are often produced in one area and then distributed to other areas for retailing and consumption. Globalised distribution and supply chains make it imperative that food should survive the transit between producer and consumer ? as a perishable commodity, food carries a high risk of spoilage. As such, a realistic, workable and reproducible shelf life has to be determined every time a new food product is developed and marketed; shelf life determination of food has become an integral part of food safety, quality assurance, product development, marketing, and consumer behaviour. Dominic Man?s Shelf Life, now in a revised and updated second edition, encompasses the core considerations about shelf life. Section 1 introduces shelf life, describes its relationship to food safety, and provides answers to the frequently asked questions around shelf life determination and testing which are a manager?s chief concerns. Section 2 covers the science of the various ways in which food deteriorates and spoils, including the physical, chemical and microbiological changes. Section 3 looks at shelf life in practice, using case studies of different products to illustrate how shelf life may be determined in real life settings. This book will be invaluable to both practitioners and students in need of a succinct and comprehensive overview of shelf life concerns and topics.