This book provides an overview of bioinspired metal-sulfur catalysis by covering structures, activities and model complexes of enzymes exhibiting metal sulphur moieties in their active center.
This book addresses both multi robot systems and miniaturization to the nanoscale from a unifying point of view, but without leaving aside typical particularities of either. The unifying aspect is based on the concept of information minimization whose precise formulation is the Haken-Levi-principle. The authors introduce basic concepts of multi-component self-organizing systems such as order parameters (well known from equilibrium and non-equilibrium phase transitions) and the slaving principle (which establishes a link to dynamical systems). Among explicit examples is the docking manoeuvre of two robots in two and three dimensions. The second part of the book deals with the rather recently arising field of molecular robotics. It is particularly here where nature has become a highly influential teacher for the construction of robots. In living biological cells astounding phenomena occur: there are molecules (proteins) that literally walk on polymer strands and transport loads that are heavier than their carriers, or molecules that, by joint action, contract muscles. The book provides the reader with an insight into these phenomena, especially by a detailed theoretical treatment of the molecular mechanism of muscle contraction. At the molecular level, for an appropriate approach the use of quantum theory is indispensable. The authors introduce and use it in a form that avoids all the clumsy calculations of wave-functions. They present a model which is based on an elementary version of quantum field theory and allows taking into account the impact of the surrounding on the quantum mechanical activity of a single molecule. By presenting explicit and pedagogical examples, the reader gets acquainted with the appropriate modelling of the walking behaviour of single molecular robots and their collective behaviour. The further development of multi-robot systems and particularly of molecular robots will require the cooperation of a variety of disciplines. Therefore the book appeals to a wide audience including researchers, instructors, and advanced graduate students.
Blood Science is a relatively new discipline which merges biochemistry, haematology, immunology, transfusion science and genetics. This bringing together of traditional disciplines requires a corresponding change in education and training for healthcare scientists and Blood Science: Principles and Pathology is written in response to this emerging need. An introduction to the subject and an overview of the techniques used in blood science are followed by a series of chapters based on groups of analytes investigated in blood – red blood cells, white blood cells and platelets, followed by the constituents of plasma, including waste products, electrolytes, glucose, lipids, enzymes, hormones, nutrients, drugs, poisons and others. Each chapter is supported by learning objectives, summaries and further information, and a focus is given to chapter specific case studies with interpretation to demonstrate how laboratory data in conjunction with clinical details is utilised when investigating patients with actual or suspected disease. Finally, a separate chapter offers more detailed case reports that integrate the different aspects of blood science. Undergraduate students taking blood science modules as part of their BSc programmes in Biomedical and Healthcare Sciences will appreciate the level of integration between clinical biochemistry and haematology. In addition, this book will provide suitable initial reading for those students embarking on blood science modules on MSc programmes and will be of value to new graduates entering the profession and starting their career in blood science departments by supplementing practice-based training with the required theoretical underpinning. This book is approved by the Institute of Biomedical Science and written by its expert writers, many of whom work on the Institute’s advisory panels.
A comprehensive review of the state of the art and advances in the field, while also outlining the future potential and development trends of optical imaging and optical metrology, an area of fast growth with numerous applications in nanotechnology and nanophysics. Written by the world's leading experts in the field, it fills the gap in the current literature by bridging the fields of optical imaging and metrology, and is the only up-to-date resource in terms of fundamental knowledge, basic concepts, methodologies, applications, and development trends.
The chemistry of heterocycles is an important branch of organic chemistry. This is due to the fact that a large number of natural products, e. g. hormones, antibiotics, vitamins, etc. are composed of heterocyclic structures. Often, these compounds show beneficial properties and are therefore applied as pharmaceuticals to treat diseases or as insecticides, herbicides or fungicides in crop protection. This volume presents important pharmaceuticals. Each of the 20 chapters covers in a concise manner one class of heterocycles, clearly structuredas follows: * Structural formulas of most important examples (market products) * Short background of history or discovery * Typical syntheses of important examples * Mode of action * Characteristic biological activity * Structure-activity relationship * Additional chemistry information (e.g. further transformations, alternative syntheses, metabolic pathways, etc.) * References. A valuable one-stop reference source for researchers in academia and industry as well as for graduate students with career aspirations in the pharmaceutical chemistry.
The chemistry of heterocycles is an important branch of organic chemistry. This is due to the fact that a large number of natural products, e. g. hormones, antibiotics, vitamins, etc. are composed of heterocyclic structures. Often, these compounds show beneficial properties and are therefore applied as pharmaceuticals to treat diseases or as insecticides, herbicides or fungicides in crop protection. This volume presents important agrochemicals. Each of the 21 chapters covers in a concise manner one class of heterocycles, clearly structured as follows: * Structural formulas of most important examples (market products) *Short background of history or discovery * Typical syntheses of important examples * Mode of action * Characteristic biological activity * Structure-activity relationship * Additional chemistry information (e.g. further transformations, alternative syntheses, metabolic pathways, etc.) * References A valuable one-stop reference source for researchers in academia and industry as well as for graduate students with career aspirations in the agrochemical chemistry.
This volume contains papers presented at The 15th International Conference on the Texture of Materials from June 1-5th, 2008 in Pittsburgh, PA. Chapters include: Thin Films Texture at Non-Ambient Conditions Novel Texture Measurement Techniques Including 3D Complex Oxides Interface Textures Recrystallization Texture Biomaterials Texture Effects on Damage Accumulation Digital Microstructures View information on Materials Processing and Texture: Ceramic Transactions, Volume 200.
A comprehensive, authoritative look at an emergent area in post-genomic science, Evolutionary genomics is an up-and-coming, complex field that attempts to explain the biocomplexity of the living world. Evolutionary Genomics and Systems Biology is the first full-length book to blend established and emerging concepts in bioinformatics, evolution, genomics, and structural biology, with the integrative views of network and systems biology. Three key aspects of evolutionary genomics and systems biology are covered in clear detail: the study of genomic history, i.e., understanding organismal evolution at the genomic level; the study of macromolecular complements, which encompasses the evolution of the protein and RNA machinery that propels life; and the evolutionary and dynamic study of wiring diagrams—macromolecular components in interaction—in the context of genomic complements. The book also features: A solid, comprehensive treatment of phylogenomics, the evolution of genomes, and the evolution of biological networks, within the framework of systems biology A special section on RNA biology—translation, evolution of structure, and micro RNA and regulation of gene expression Chapters on the mapping of genotypes to phenotypes, the role of information in biology, protein architecture and biological function, chromosomal rearrangements, and biological networks and disease Contributions by leading authorities on each topic Evolutionary Genomics and Systems Biology is an ideal book for students and professionals in genomics, bioinformatics, evolution, structural biology, complexity, origins of life, systematic biology, and organismal diversity, as well as those individuals interested in aspects of biological sciences as they interface with chemistry, physics, and computer science and engineering.
Stay up-to-date with this collection of papers presented at the 69th Conference on Glass Problems at The Ohio State University. Topics include melting and molding, refractories, and environmental issues and new products.
Currently, recycling of e-waste can be broadly divided into three major steps: (a) disassembly: selectively disassembly, targeting on singling out hazardous or valuable components for special treatment, is an indispensable process in recycling of e-waste; (b) upgrading: using mechanical processing and/or metallurgical processing to up-grade desirable materials content, i.e. preparing materials for refining process, such as grinding the plastics into powders; (c) refining: in the last step, recovered materials are retreated or purified by using metallurgical processing so as to be acceptable for their original using. Four topical areas are planned including one special session on the recycling of batteries. Papers in the following topics will be welcomed: Mechanical recycling of E-Wastes Recycling of plastics from E-Wastes Recovery of metals from E-wastes Hydrometallurgical recycling (leaching) of E-Wastes Combustion or pyrolysis of E-Wastes Life cycle and economic analysis for the recycling of E-Wastes