Прочая образовательная литература

Различные книги в жанре Прочая образовательная литература

Counseling for Social Justice

Courtland Lee C.

Thought leaders examine social justice counseling from a global perspective in the latest edition of this pioneering book. Part 1 examines the historical and contemporary context of social justice counseling. Part 2 presents ideas for promoting social justice and challenging oppression and marginalization with individual clients and communities. Topics in this section include perspectives on peace, violence, and conflict; recommendations for global initiatives in school counseling; advocacy for decent work; promoting gender equity; fighting racism; and implementing social action strategies with LGBTQ+ communities, older people, people with disabilities, and undocumented immigrants. Part 3 contains chapters on the role of neuroscience in advancing social justice and infusing social justice perspectives in ethics, research, and counselor training. “This third edition could not come at a better time given the current national and global political climates. Lee and his colleagues raise the bar, challenging counselors to move from simply understanding social injustice to engaging in actions that improve systemic inequities. The magnitude of this charge cannot be ignored. This text should be mandatory in every counselor education program in the United States and across the globe; the time is now. Counselors must take the lead by leaning in and changing the world one person at a time, one community at a time, and one nation at a time.” —Colleen R. Logan, PhD, Fielding Graduate University “Courtland Lee continues to be a leader in helping to advance social justice in the counseling profession. This book builds on previous editions by offering new and emerging strategies for implementing social justice with clients and communities. It pushes the limits of what is possible when counselors incorporate social justice into their practice.” —Manivong J. Ratts, PhD, Seattle University “This text provides crucial information on how counselors can engage in social justice work throughout their practice, research, and advocacy activities to not only become effective change agents but also transform how we see ourselves and the world.” —Anneliese A. Singh, PhD, University of Georgia

Introduction to Heterocyclic Chemistry

Peter Jacobi A.

A unique approach to a core topic in organic chemistry presented by an experienced teacher to students and professionals Heterocyclic rings are present in the majority of known natural products, contributing to enormous structural diversity. In addition, they often possess significant biological activity. Medicinal chemists have embraced this last property in designing most of the small molecule drugs in use today. This book offers readers a fundamental understanding of the basics of heterocyclic chemistry and their occurrence in natural products such as amino acids, DNA, vitamins, and antibiotics. Based on class lectures that the author has developed over more than 40 years of teaching, it focuses on the chemistry of such heterocyclic substances and how they differ from carbocyclic systems. Introductory Heterocyclic Chemistry offers in-depth chapters covering naturally occurring heterocycles; properties of aromatic heterocycles; π-deficient heterocycles; π-excessive heterocycles; and ring transformations of heterocycles. It then offers an overview of 1,3-dipolar cycloadditions before finishing up with a back-to-basics section on nitriles and amidines. Presents a conversational approach to a fundamental topic in organic chemistry teaching Offers a unique look at this core organic chemistry topic via important naturally occurring and/or biologically active heterocycles Based on the author's many years of class lectures for teaching at the undergraduate and graduate level as well as pharmaceutical-industry courses Clear, concise, and accessible for advanced students of chemistry to gain a fundamental understanding of the basics of heterocyclic chemistry Introductory Heterocyclic Chemistry is an excellent text for undergraduate and graduate students as well as chemists in industrial environments in chemistry, pharmacy, medicinal chemistry, and biology.

The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics

J. Mahan Robert

A groundbreaking guide dedicated exclusively to the MCRT method in radiation heat transfer and applied optics The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics offers the most modern and up-to-date approach to radiation heat transfer modelling and performance evaluation of optical instruments. The Monte Carlo ray-trace (MCRT) method is based on the statistically predictable behavior of entities, called rays, which describe the paths followed by energy bundles as they are emitted, reflected, scattered, refracted, diffracted and ultimately absorbed. The author – a noted expert on the subject – covers a wide variety of topics including the mathematics and statistics of ray tracing, the physics of thermal radiation, basic principles of geometrical and physical optics, radiant heat exchange among surfaces and within participating media, and the statistical evaluation of uncertainty of results obtained using the method. The book is a guide to help formulate and solve models that accurately describe the distribution of radiant energy in thermal and optical systems of practical engineering interest. This important guide: Combines radiation heat transfer and applied optics into a single discipline Covers the MCRT method, which has emerged as the dominant tool for radiation heat transfer modelling Helps readers to formulate and solve models that describe the distribution of radiant energy Features pages of color images and a wealth of line drawings Written for faculty and graduate students in mechanical and aerospace engineering and applied optics professionals, The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics is the first book dedicated exclusively to the MCRT method.

Rational Design of Solar Cells for Efficient Solar Energy Conversion

Alagarsamy Pandikumar

An interdisciplinary guide to the newest solar cell technology for efficient renewable energy Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells. The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion. This important resource: Offers a comprehensive review of recent developments in solar cell technology Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application. Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Handbook of Renewable Materials for Coloration and Finishing

Mohd Yusuf

This unique handbook provides a vivid multidisciplinary dimension through technological perspectives to present cutting-edge research in the field of natural coloration and finishing. The 20 chapters are divided in to four parts: Substrates for coloration and finishing; renewable colorants and their applications; advanced materials and technologies for coloration and finishing; sustainability. Among the topics included in the Handbook of Renewable Materials for Coloration and Finishing are: The systematic discussion on the suitability, physical, chemical and processing aspects of substrates for coloration and finishing Bio-colorant’s application as photosensitizers for dye sensitized solar cells Animal based natural dyes Natural dyes extraction and dyeing methodology Application of natural dyes to cotton and jute textiles Sol-gel flame retardant and/or antimicrobial finishings for cellulosic textiles Rot resistance and antimicrobial finish of cotton khadi fabrics Advanced materials and technologies for antimicrobial finishing of cellulosic textiles

Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts

Weichang Zhou

Written for industrial and academic researchers and development scientists in the life sciences industry, Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts is a guide to the tools, approaches, and useful developments in bioprocessing. This important guide: • Summarizes state-of-the-art bioprocessing methods and reviews applications in life science industries • Includes illustrative case studies that review six milestone bio-products • Discuses a wide selection of host strain types and disruptive bioprocess technologies

Two-dimensional X-ray Diffraction

Bob He B.

An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.

Theory and Practice of Water and Wastewater Treatment

Ronald Droste L.

Provides an excellent balance between theory and applications in the ever-evolving field of water and wastewater treatment Completely updated and expanded, this is the most current and comprehensive textbook available for the areas of water and wastewater treatment, covering the broad spectrum of technologies used in practice today—ranging from commonly used standards to the latest state of the art innovations. The book begins with the fundamentals—applied water chemistry and applied microbiology—and then goes on to cover physical, chemical, and biological unit processes. Both theory and design concepts are developed systematically, combined in a unified way, and are fully supported by comprehensive, illustrative examples. Theory and Practice of Water and Wastewater Treatment, 2nd Edition: Addresses physical/chemical treatment, as well as biological treatment, of water and wastewater Includes a discussion of new technologies, such as membrane processes for water and wastewater treatment, fixed-film biotreatment, and advanced oxidation Provides detailed coverage of the fundamentals: basic applied water chemistry and applied microbiology Fully updates chapters on analysis and constituents in water; microbiology; and disinfection Develops theory and design concepts methodically and combines them in a cohesive manner Includes a new chapter on life cycle analysis (LCA) Theory and Practice of Water and Wastewater Treatment, 2nd Edition is an important text for undergraduate and graduate level courses in water and/or wastewater treatment in Civil, Environmental, and Chemical Engineering.