Discussing recent advances in the field of matrix metalloproteinase (MMP) research from a multidisciplinary perspective, Matrix Metalloproteinase Biologyis a collection of chapters written by leaders in the field of MMPs. The book focuses on the challenges of understanding the mechanisms substrate degradation by MMPs, as well as how these enzymes are able to degrade large, highly ordered substrates such as collagen. All topics addressed are considered in relation to disease progression including roles in cancer metastasis, rheumatoid arthritis and other inflammatory diseases. The text first provides an overview of MMPs, focusing on the history, the development and failures of small molecule inhibitors in clinical trials, and work with TIMPS, the endogenous inhibitors of MMPs. These introductory chapters establish the foundation for later discussion of the recent progress on the design of different types of inhibitors, including novel antibody based therapeutics. The following section emphasizes research using novel methods to further the study of the MMPs. The third and final section focuses on in vivo research, particularly with respect to cancer models, degradation of the extracellular matrix, and MMP involvement in other disease states. Written and edited by leaders in the field, Matrix Metalloproteinase Biology addresses the rapidly growth in MMP research, and will be an invaluable resource to advanced students and researchers studying cell and molecular biology.
Presents the physical background of ligand binding and instructs on how experiments should be designed and analyzed Reversible Ligand Binding: Theory and Experiment discusses the physical background of protein-ligand interactions—providing a comprehensive view of the various biochemical considerations that govern reversible, as well as irreversible, ligand binding. Special consideration is devoted to enzymology, a field usually treated separately from ligand binding, but actually governed by identical thermodynamic relationships. Attention is given to the design of the experiment, which aids in showing clear evidence of biochemical features that may otherwise escape notice. Classical experiments are reviewed in order to further highlight the importance of the design of the experiment. Overall, the book supplies students with the understanding that is necessary for interpreting ligand binding experiments, formulating plausible reaction schemes, and analyzing the data according to the chosen model(s). Topics covered include: theory of ligand binding to monomeric proteins; practical considerations and commonly encountered problems; oligomeric proteins with multiple binding sites; ligand binding kinetics; hemoglobin and its ligands; single-substrate enzymes and their inhibitors; two-substrate enzymes and their inhibitors; and rapid kinetic methods for studying enzyme reactions. Bridges theory of ligand binding and allostery with experiments Applies historical and physical insight to provide a clear understanding of ligand binding Written by a renowned author with long-standing research and teaching expertise in the area of ligand binding and allostery Based on FEBS Advanced Course lectures on the topic Reversible Ligand Binding: Theory and Experiment is an ideal text reference for students and scientists involved in biophysical chemistry, physical biochemistry, biophysics, molecular biology, protein engineering, drug design, pharmacology, physiology, biotechnology, and bioengineering.
This update to the award-winning The Origins of Modern Humans: A World Survey of the Fossil Evidence covers the most accepted common theories concerning the emergence of modern Homo sapiens—adding fresh insight from top young scholars on the key new discoveries of the past 25 years. The Origins of Modern Humans: Biology Reconsidered allows field leaders to discuss and assess the assemblage of hominid fossil material in each region of the world during the Pleistocene epoch. It features new fossil and molecular evidence, such as the evolutionary inferences drawn from assessments of modern humans and large segments of the Neandertal genome. It also addresses the impact of digital imagery and the more sophisticated morphometrics that have entered the analytical fray since 1984. Beginning with a thoughtful introduction by the authors on modern human origins, the book offers such insightful chapter contributions as: Africa: The Cradle of Modern People Crossroads of the Old World: Late Hominin Evolution in Western Asia A River Runs through It: Modern Human Origins in East Asia Perspectives on the Origins of Modern Australians Modern Human Origins in Central Europe The Makers of the Early Upper Paleolithic in Western Eurasia Neandertal Craniofacial Growth and Development and Its Relevance for Modern Human Origins Energetics and the Origin of Modern Humans Understanding Human Cranial Variation in Light of Modern Human Origins The Relevance of Archaic Genomes to Modern Human Origins The Process of Modern Human Origins: The Evolutionary and Demographic Changes Giving Rise to Modern Humans The Paleobiology of Modern Human Emergence Elegant and thought provoking, The Origins of Modern Humans: Biology Reconsidered is an ideal read for students, grad students, and professionals in human evolution and paleoanthropology.
Photoinitiating systems for polymerization reactions are largely encountered in a variety of traditional and high-tech sectors, such as radiation curing, (laser) imaging, (micro)electronics, optics, and medicine. This book extensively covers radical and nonradical photoinitiating systems and is divided into four parts: * Basic principles in photopolymerization reactions * Radical photoinitiating systems * Nonradical photoinitiating systems * Reactivity of the photoinitiating system The four parts present the basic concepts of photopolymerization reactions, review all of the available photoinitiating systems and deliver a thorough description of the encountered mechanisms. A large amount of experimental and theoretical data has been collected herein. This book allows the reader to gain a clear understanding by providing a general discussion of the photochemistry and chemistry involved. The most recent and exciting developments, as well as the promising prospects for new applications, are outlined.
Recent developments in the fields of energy, transport and industrial engineering have led to the emergence of new types of structures and infrastructures subject to variable stresses, for which the usual methods for designing pile foundations are now inadequate. The recommendations presented in this book will help to partly fill this technical gap by proposing a methodological approach and calculation methods to take account of the effects of cyclic loads in the design of foundations on piles. These are based on both laboratory and full scale experiments, and on modeling carried out within the framework of the national SOLCYP project.
Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into ‘thermodynamics’ and ‘kinetics’ into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists. Fully revised and expanded, this new edition includes the following updates and features: Includes a completely new chapter on Principles of Statistical Thermodynamics. Presents new material on solar and wind energy flows and energy flows of interest to engineering. Covers new material on self-organization in non-equilibrium systems and the thermodynamics of small systems. Highlights a wide range of applications relevant to students across physical sciences and engineering courses. Introduces students to computational methods using updated Mathematica codes. Includes problem sets to help the reader understand and apply the principles introduced throughout the text. Solutions to exercises and supplementary lecture material provided online at http://sites.google.com/site/modernthermodynamics/. Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition is an essential resource for undergraduate and graduate students taking a course in thermodynamics.
Differentialgleichungen, Quantenmechanik, Wahrscheinlichkeitsrechnung – wie alle exakten Naturwissenschaften erfordert auch die Chemie mathematisches Handwerkszeug, um Prozesse und Phanomene zu untersuchen. Was angehende Chemiker von der Mathematik wissen mussen, bietet in bewahrter Weise «Mathematik fur Chemiker» in der siebten Auflage. Das notwendige mathematische Rustzeug wird ma?geschneidert furs Studium vermittelt, anschaulich in der Darstellung und ohne komplizierte Beweisketten. Zahlreiche praktische Beispiele aus der Chemie wecken das Interesse an der Mathematik und stellten den Bezug zur fachlichen Anwendung her. Die leicht verstandliche Form garantiert den sicheren Einstieg, im Aufgabenteil mit Losungen lasst sich das erworbene Wissen selbststandig uberprufen. Weiterfuhrende Themen machen das Buch zum wertvollen Begleiter bis zum Examen. Durchgehend aktualisiert und um ein neues Kapitel zu numerischen Verfahren erweitert – fur die Grundvorlesung Mathematik ebenso wie bei Fragen und Problemen im weiteren Studium unentbehrlich.
Plant Cells and Their Organelles provides a comprehensive overview of the structure and function of plant organelles. The text focuses on subcellular organelles while also providing relevant background on plant cells, tissues and organs. Coverage of the latest methods of light and electron microscopy and modern biochemical procedures for the isolation and identification of organelles help to provide a thorough and up-to-date companion text to the field of plant cell and subcellular biology. The book is designed as an advanced text for upper-level undergraduate and graduate students with student-friendly diagrams and clear explanations.
This is the newest title in the successful Molecular Plant Biology Handbook Series. Just like the other titles in the series this new book presents an excellent overview of different approaches and techniques in Metabolomics. Contributors are either from ivy-league research institutions or from companies developing new technologies in this dynamic and fast-growing field. With its approach to introduce current techniques in plant metabolomics to a wider audience and with many labs and companies considering to introduce metabolomics for their research, the title meets a growing market. The Kahl books are in addition a trusted brand for the plant science community and have always sold above expectations.