This book provides a broad introductory survey of this remarkable field, aiming to establish and clearly differentiate its physical principles, and also to provide a snapshot portrait of many of the most prominent current applications. Primary emphasis is placed on developing an understanding of the fundamental photonic origin behind the mechanism that operates in each type of effect. To this end, the first few chapters introduce and develop core theory, focusing on the physical significance and source of the most salient parameters, and revealing the detailed interplay between the key material and optical properties. Where appropriate, both classical and photonic (quantum mechanical) representations are discussed. The number of equations is purposely kept to a minimum, and only a broad background in optical physics is assumed. With copious examples and illustrations, each of the subsequent chapters then sets out to explain and exhibit the main features and uses of the various distinct types of mechanism that can be involved in optical nanomanipulation, including some of the very latest developments. To complete the scene, we also briefly discuss applications to larger, biological particles. Overall, this book aims to deliver to the non-specialist an amenable introduction to the technically more advanced literature on individual manipulation methods. Full references to the original research papers are given throughout, and an up-to-date bibliography is provided for each chapter, which directs the reader to other selected, more specialised sources.
A Tour of the Subatomic Zoo: A guide to particle physics is a brief and ambitious expedition into the remarkably simple ingredients of all the wonders of nature. With hardly a mathematical formula, Professor Cindy Schwarz clearly explains the language and much of the substance of elementary particle physics for the 99% of students who do not aspire to a career in physics. Views of matter from the atom to the quark are discussed in a form that an interested person with no physics background can easily understand. College and university courses can be developed around this book and it can be used alone or in conjunction with other material. Even college physics majors would enjoy reading this book as an introduction to particle physics. High-school, and even middle-school, teachers could also use this book to introduce this material to their students. It will also be beneficial for high-school teachers who have not been formally exposed to high-energy physics, have forgotten what they once knew, or are no longer up to date with recent developments.
Sound-Power Flow: A practitioner's handbook for sound intensity is a guide for practitioners and research scientists in different areas of acoustical science. There are three fundamental quantities in acoustics: sound pressure, sound particle velocity, and sound intensity. This book is about sound intensity and demonstrates the advantages and uses of acoustical sensing compared with other forms of sensing. It describes applications such as: measuring total sound power; directional hearing of humans and mammals; echolocation; measuring sound-power flow in ducts; and uses of non-contact, focused, high-frequency, pulse-echo ultrasonic probes. This book presents computational approaches using standard mathematics, and relates these to the measurement of sound-power flow in air and water. It also uses linear units rather than logarithmic units – this making computation in acoustics simpler and more accessible to advanced mathematics and computing. The book is based on work by the author and his associates at General Motors, the University of Mississippi, and Sonometrics.
The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.
Biophysics of the Senses connects fundamental properties of physics to biological systems, relating them directly to the human body. It includes discussions of the role of charges and free radicals in disease and homeostasis, how aspects of mechanics impact normal body functions, human bioelectricity and circuitry, forces within the body, and biophysical sensory mechanisms. This is an exciting view of how sensory aspects of biophysics are utilized in everyday life for students who are curious but struggle with the connection between biology and physics.
Sonoluminescence is the transformation of sound into light. To most who know how to do sonoluminescence, it's just a little glowing bubble levitating in a flask of water. But it holds some surprises that have been overlooked. This book looks to reform our scientific understanding of sonoluminescence and explore the practical applications as an energy source.
From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.
This book is both an introduction and a demonstration of how Visual Basic for Applications (VBA) can greatly enhance Microsoft Excel® by giving users the ability to create their own functions within a worksheet and to create subroutines to perform repetitive actions. The book is written so readers are encouraged to experiment with VBA programming with examples using fairly simple physics or non-complicated mathematics such as root finding and numerical integration. Tested Excel® workbooks are available for each chapter and there is nothing to buy or install.
This is an in-depth look at baryon number violation in the Standard Model including the necessary background in finite temperature field theory, plasma dynamics and how to calculate the out of equilibrium evolution of particle number densities throughout a phase transition. It is a self-contained pedagogical review of the theoretical background to electroweak baryogenesis as well as a summary of the other prevailing mechanisms for producing the asymmetry between matter and antimatter using the Minimal Supersymmetric Standard Model as a pedagogical tool whenever appropriate.
Monte Carlo methods have been very prominent in computer simulation of various systems in physics, chemistry, biology, and materials science. This book focuses on the discussion and path-integral quantum Monte Carlo methods in many-body physics and provides a concise but complete introduction to the Metropolis algorithm and its applications in these two techniques. To explore the schemes in clarity, several quantum many-body systems are analysed and studied in detail. The book includes exercises to help digest the materials covered. It can be used as a tutorial to learn the discussion and path-integral Monte Carlo or a recipe for developing new research in the reader's own area. Two complete Java programs, one for the discussion Monte Carlo of 4^He clusters on a graphite surface and the other for the path-integral Monte Carlo of cold atoms in a potential trap, are ready for download and adoption.