Таро. 21 способ получить ответ на свой вопрос. Мэри К. Гри

Читать онлайн.
Название Таро. 21 способ получить ответ на свой вопрос
Автор произведения Мэри К. Гри
Жанр Эзотерика
Серия
Издательство Эзотерика
Год выпуска 2014
isbn 978-5-9573-2715-8



Скачать книгу

может принимать различные формы и связывать людей и события, которые разделены расстоянием и временем. – Примеч. ред.

      2

      От e-motion, motion – действие. – Примеч. ред.

      3

      Кватерность – термин, введенный К. Г. Юнгом. Универсальный архетип четырехкратности, психологически этот образ указывает на идею целостности. По Юнгу, для описания любого целого необходимы минимум четыре элемента (четыре стороны света, четыре времени года и т. д.).

iVBORw0KGgoAAAANSUhEUgAAAQoAAAGPCAMAAACTaG6QAAAABGdBTUEAAK/INwWK6QAAABl0RVh0U29mdHdhcmUAQWRvYmUgSW1hZ2VSZWFkeXHJZTwAAABgUExURbOzs+vr66urq6Ojo1ZWVpqamtXV1dDQ0NnZ2c3NzZOTk8nJyUdHR93d3YqKiv///8XFxfPz84ODg+Hh4cHBwXt7ezc3N3Nzc2tra7y8vOXl5bm5uWJiYicnJ/n5+QkJCaW8Iv0AANQqSURBVHja3L3ZguM4zjRKcZNISbRM7Yud7/+WfwQoZ/XM1+W5OVcnuzpXLxKIJQIEQPX48lG79fXz//OPbj2rcrfqX2Xw5v9Tt2S1h9C2wzC0+BjagG/bUD5q+b78VMuj2jbU3jf4r8ZXfDQjPo6xb/Bf33gvvy1/8vI8fG3xMx7e81PT8Pd8QMNXafhz8/u1lhev+Tr8kFeSb5r7hUNbvufDffC9PM1/PoL8w4X0vuH3NZ6ANzvd+hOf77+I4i2fLqvbGjdMQUwUBT8PE78ZQl2LhIooWoqixiNbXFctFxVEEnxfSgMX1Rcp8Ju6bkYRDJ+En4LcY/+5B7ltCI/P4xObpnyiOPu+vK48rrmlUQTCSwp1c78a5CYy/AgeEuRvxlsy9eczrzdM1zL+TSsgi+o1y2vzltuPKCYKhYv/qyqUQ9EMfm1lSeWf3FDPu+H/fMt7KZteLqeRVw7lBspafpZPblk+9RDZWL5+fjE2IuDPXYXPXYUiDk/N4K9a/CWI3O+b5zeyJKG8O58i78nv3NL/zUAej2tu/ICVDmIZ5WOiLGgkuOtaDKYVTRBFk5sKRb3FSsrKNbKEdfh8FCHdV8CLD0WTsMT3kyEq/hsph778o0qIjol+0NaaWz8+StG2PuAKsfbFgPGrxgfRRZGQCApKXt69ERmKbfXQIzwyXX8VhbZyoXgyV5ti2Cf5ECupKY06iAcZ+KLlNouxyLv/WujnrilSsaOWQgr1rZ2wpPJjz4WUeyhO5mhEA0ZKRD4dvSjMKCrCW2iK+eN2sGA19QGi8EU7W3El4sP4exp6uXtYDjUwFHd2myRlYqe/uc0FfqL9KH/7qxL3R4Do+U+8CFegrDBVaCjaUd8aK7cmFzcUD1PLVXrqW1GIulh+8WseqytGAeUQ/9A34mxw98fY3ILAf6IjjS8v3ze3ALlysjx8Q755G8qKFaWFt+T7UxL1PxZKrt+r7i+iqG3gtd5GUJxE+QSd4C3jDaa2FhnJcheX0pYPMaqiJxRn/WthRSB/fEvtP0bkywX2JXhQ+/tDrAGWcsgXOg182+MX+OLpLEbIorhpL06y3BX1FP9D8L6oKa+Ay0NZ07CbEktu5ymOFk/vxn8XhTYiz8/ai13cEfVzs7dW8Nsw3P6Ev6XFBvmbPEzCr7zAx+mKERU5iVaUu/cfv/cJwqIQ1AxG4+IvSjQ6xJlSMUZGhZ7239ci0b74nIGq8LFZWgv/q4t3wBd/h2J5PwaZGg7DJ/3vokhDCR58NZHEZ1V/l55fxIvyrW41kDArgpmG9ld0Ykb7DmHseKVWLHdo7xev79hY3w6Glyq3LfZwx5BRZHAcxCjQi0a+veNkc0fopkRgqkdd1Fn041bZUEK8F/MQUypOrTxNYrVe/10Ua/Pr8ovLlBuTmxLfwcWWGCs6XxBGTQUo0fH3L5N8hhyK05UXofJOslgSCm/k9UEJngvFqxvvaCG6UEEVeP+0DRoMjUO8Xf2BTTQZwhW+XHFyDCt4CFWEQQLusi3AqoQ8+U6iSbmCafurKG6D/lj4rwpw+T+g6/eD3lN+H4b7ibdfkUdCCBDFLjItUuUV0rDwyBtRyuVAOoIp/A0jGEEO0YeecriVA07koOvEnUogqAVoCIQp93WvB/VBQgikJRZUF82oP1HG/4JR/PX8i1bMvpV1xt3JUvOyh2L4t+n/fhTlGEr4GIqbxU/TrRLTQBGIKPAPH/Ic8aS7QAB/B5CmmIiETgmYsAEKZDwqkcJxf+Ln8hhRi6YN/8Bk3n9ATPGYxY9CZHSVJVQVOxa79jesoYNp9r9qxQephHA/78aYBW3fzqKEjfv34f4XisZMBaG2ohP4UOd57vi3U7gt8fs0CPgp4LG+PTqW/6AWUCHEUR4NLYL2QQnw01FJVO0Lbm2DIOxRnCxvqv4IoVhBKACuLcZQUETxZR+kI+/cn38TRd/+iqL4xPoOGzfoLt/eQfMOHwyx060/+EFsYbotZD8VpEGR0HGK5xgKEJIbakSLxfMdYgfiIxpBEb/g4igQQ6LIIS6Edwnf4m/EQfuo+w+ODRIrIKgmlEAt4g6iHOE26fp2ODSQv2pF3X5olhid8IV2uC3gw1WH23/ykbUIAGiDjI36UQKoWBUVA/qg1D6IeCbxQfVEzZXF5NXf7k/WXyjcDTQhHYqHv5VvxpuRCDJvxPjlYZ44o/E3cBuCOAb8poZxFHZWIKh4hlqgof+QQfxC/d1t0ruI8oubYZATVhZK7ChwYRAX3Qow/ajNh60WhZiKAxkoCVjIdBbB/MpQVpyBorCKXsLlSBuohYdINIEUPv6iqgSSH17Mp9g+lYq60PclAhF3yYqLyd1GEYQRfgAN7aq9cYw8tPF/9xUF1P/aHG1ham/YVCwtSAQo+PbjOgSVCyUoAKzcMg1kL3pR1OJmMyW9gRsC0K6aj78syw74JNYCK4AuVLCJSoIqFYO2cQg/aSRc+ELafBGEF3Qv0UMYqASZP6Dqc4G3Uy0MFVbzTRQfClUc5o0V5Kbh+ibev7/pRivaUt8InZdxP4E3zK+MoXjSLnEE/mQ6C3wtfNnL3RV7FwOhv4C39MU2CrI6BGVWR1XRTfQlH9QQQ8ialiAi9DPcNhLEIApjk/vFf+ShXBoxaR/+INxmPL8YiC8c4gMlP3CzvpE4X6wJN/ctruSG4vWHqX5ohyjBKeR2OAk7i5oIP2NSqqSbSnKDt9lIcBDnWYGH4f5hMZABZXQUxHUUjtYIhShIsx8J3slOvWhFK/GzFSRVl5VreyKzknoqibTC1LkM30TR1LfRF5oxAWfS7d7uktqB3wi480TSwleEgZTVuBltoSXFJAqcqD1+PgtHKdi5ryWpIqLgPTZiHLjs6jlWz+d44EtVUUgUylEJ4BJMXhfmxs9MTgjyDgVutuIdfXOT5r1uG1EAXMTUFq9R+zvbRiX7EkFKbojERjwcoJJEg2kqYaKlkg23AhTPccvoVpFwY68bsJPImuvSXlkbYWPT7Vd+6ZiQUImaNHvIYWyqM6ech2c1Pgm0qBQikL4+xuJRfWEfhWD0H44rGaEiBwZO8ZOIGZAOL42/E9dfFuzOgjTfRdGId73Dp3++Jef5rMJUE/T01fibzrjJV2Hl7R9ydmvFTeD8uvhxvvQkIfdOYFDk1AABVcRKYwGcTV9ZMxxVvdrqWdF7HOIziLrJSY4bZRVO2kjuC/ckGSrBEXQMjTj15vmuoF3PIwwH7+H5fLz7iWD3kyXAS+3ffIUQ53uRAyQRNICBfzx8/3hU9T68H08vRKN4x0Leh/Anb1EiSJBcGGXa565aL0CWifL1XBdYNUy8Okqapg5YdvjG5oBePJPFHeBjHZ9QBjEWuA0GDuhJMRAvmKSktAR285NkJwgz27bBFcDMcPdvZmz7EZeM6z3bCndAUdxZZMj/iygCYzWdZi1xpHpoBVc/qcc4QhLRhKCqd8Xg0fZ0G/VvJiPcgHQQAnMDVr5Un2xa+zD4aNdzs21jurnu5znNJ22jSmvaVKXtNtsJLqGLFYNH9TyvtamirQ2ePj/bOW9NJWpU0qQNmUstqdDmkzMVvNC+336oIUzI4cAdPN645MBdj2eAUMhCihigS8fwd1EUYFISuG07PoZzDJunPjwfva7eOjbv6vmGa39XavC/1L145fpOm9wBpeDWMf4shLGTX1JvfmzfX+a4rqbK6xHw2fpev6ajcw93wgpemjACMnna/D767V29zPulbfO2wyHht7nzwKIOJQ1ctlKoFKB71ftoYBfvap9gEljCZng+qpUctH4/fIHsd+SavkGsTxoMt+ffTzWO22t7vKv68YRtxKuLEDOMpMJrvt9jSUbQMZTdmcLZJvHW1Ba42T52dmFmOiyxdvNyVbMOL4iumeibFjPWlV0fXVYJwKp/uYqXWVWPK72rcYZIzGMx1zLVnpGkRB1hbn2JvyKYkpuqp/GAWjyezNSaLeFioRxQi8d0XZd5VMcbblReQGDNN1/BMPzB0K1/+/2drxwd1Q3G917Tvns4dgiDPz/eBVYOQrJuvSAune6063AOdZOsXzoml5bo41y/clLnq65VThPe7aWbBr7k2eFaD99U1j4YOavxfSV4h1RBTnOuqutnq4Sz36kdhp5xLIzsYM6COlIfYhTvB14gqNPkWhYuPJVLeb2qqnmDuomfIOf9QtL9EG5GVtKYz6F5+5fTs35UjCKPbYWHwLv19EeUB5zhVKJJST8LO7mTgQJLhnZM3dG+LsCeLnq3whq6vX0NvrEdvd+SDv/s4rNTz4HaoH4UXeU4i1Y087Pq1Psd3KNZzuPXMuoSgqgSkFpzCHRHuHyIr4QgYM+uUrF6jLzOPs0mW/eEAkosEqgG4F+ffxeFKAWNXNb6mKb3Izmb8wRNC8/HvmmYyQPu+aj5jJE+pRd0X9/po1AYesmIkq/667X76WWn4bX2cxdG86Oqq2t3m8fQNu5l6mx7KEslEaKPrxi8XtLDLHvYdFUvGQFmUTXcy73JJk6T+s1tV+EniDFH1TftIVcFhcHSnUNOWKwR2hvmzeGmq3M8an8nCQXHfwumn60/SVU8+5k+d9oRpB8N/O+jn7idOLTVMwzVgTvBuryfYzt8tji4P1Bkce+t1eecU2jUFfWcVV6Nb9zU9IgbuyQZeoW/N6PKuSaEaMJxziml6Tk+9TyrsVFrbsdDr2kgIvX3lnJzbzDf2YxKclyIHwBmVYNlg0yeU8DFNp5BBNG1wW/0uw9eMmRUovErM/UfkC4spDoMItMBdzy+H+Peijd6VFjvhhyhESg/Pt/PoS3bXB9RfELswMDRN2U3q2CgMNQH3oRQQnCBp8LCB8IdAQp7xMejIKMen9+jl/BeY225GXJvr0OEkqrob2fBgPN4Ny3pH4AgrGLypWbgza2Ue0dY4mk98L2hF4JZ++mvGe++oNmb5AWQ6Er2G6oR2gV2SX7kYf+nf1b+CQzU0MMh1LYgab+53uneYS6U+LPpHn5BGIFQL7tbAhyH+k7FFzLyJPRCBKGExnv7Au5cagK84HThpMJEiEXxiSCMMbOGx3xCgo+xxS0fzzfeo/fvxwnP0YxOP95QZE/4WvVFFH/Xir5sssq1c5sJLmkg2Rj7OD4IIOkLezjQJ15M7Vg8qESFN2TovWswiLp3IbdDe+de28+mYdlHIp0ReHinkkgCxQ2KDgjvpq7gPpncli0/ynEQzvHZYaSTkiRGJYy16bEyT8DK/l31uKhHzwwWrKEJDKYVo0VdkYZAJ+4ESP8tXyGiuJN5BR9V/fF8HKEa1MMDNZOaNW+o7+ShJgAe1eHFJCZ6WtmzLJD8Hyby2VEqv7/3YtvfbEqBiWUjHZoF+yCM9oQWoxd74wO4tSR8WIhHSTqMB3Fm1YsN0UYbhrUKfgGWIIyVv6/wfXUQgwMa7nVRppJT/iqKu45FFhJqsRM8HFN/0NKeg5eUHi63P6FntGhcLe4C/HUIk+Rx9/sTL70OJUEhee6S7xhk2y2UPTNJaeEFfdkFvdE+2HthawduR4JQLam0fbgTSuKPpiJOvD4sLex8HB4AntIgZk1DjTcRlEf6hFsAQmb9yJN7qqIWfSmI+bsobt27RdHucMHPWp9VDYODvI8n007MDTTF4kTxGNNkmwZrK8UG9aekBIHlTp0PnzKeQIXxkhWW5DTfqNTrhI99lZtsJQVR9lfkmdw5kLWnwXyqeTyBQqGtVVEjAs+ygSYbyRLz/XoXXpGCNHAtRRTNV1GUCpGyVwClhFEJv/Xt+PgfH+83UP+//4FAvXy85Yd/r/h53zVQdyWUwES5euYJngTT//JU/GZ8vP/XtWmIAvdPPA5CDF1mdqxwkPWbKLgfJLve+AbRAdG5IpoFnIB7xmXRU/Kq3vhavpF7HRr/HqvH/5TY76e//fHLz//nAxdQH08zPj7X8RZ5/dfz3jN4mVvnVoGW+UNyAEUU4/TFQJris+m0h6mp3u95togeD4Fx973fb/CUd76v+ZkVnNb/1J3/jz8AqKCwQ0XsiZs7GEWeFdligUBvrhqIGbTBmZRP/ziaqqhFyQ5+EUV/SD65+H5YRXWuej8pTWfymmN0zpiIL8YZrfGnUyv8U8Zo/i4r2S0QB+CF3cr+jy/7a0L87z2jYZCnnnACUjLSS16pZOsZNZRSO6LViYfAEZ8K76IV3tI57VJ0uAJ+MinNW8o5RWOci8Yll1KeZ/xb5eOy1zVfWKFdNWY17YNwiKIo0fRLblOQjtQHSIHm+BiAlKvdsHaPlZ8vfiz479W9ugVfXp9f8dNP+Wn5fPCHn2XpbNeVX3QLv8XPS4ePpTy1PJe/wOeFr1r+cL/q636l+/X+fJRf8styX1X3eeP7Gz5H3ic8HoNq5nwCDUroK6L4mvHu72LAu5CoedT6ym1knO5+cK28/04+eDvLz+ed+ePyj/d//ddV/xHOUp4sH3xgd99hh+UTMdn7Dpb7rcr3+H3XfZ613KL8XMtSvvtcQ9ctn4fK05fXRPoxpQgaghBTfcwDt/sNYhXHWbJSrQeEVXPEKz0a+/OS61l+L+Z3tZbfhfvn4t0lxP+xwvcf/vPn3x/+a92XX3X756+6P5r53y/98/rHG94fvMyXYUA9Sc7GEA6mf0v8aL5FkM9u4yCEbGqZA4IH6uuzwztRxvfy3Etiu88a8Xv8xz/LIyw/rmu75P9t29Z1XsWE+SXDojMIaIy09hU/xDTj1/iIKcPG+STL5/IJOc30Dwn+gc/hS+Gh+P+a47xmvlhKcFVwF/iz4XcmwoEkk8WE4ngU795qP4A2PZlMl/2Gv2uF72+8KQ6vVfBxTQUODrRz/Syvy2X4pWxy1jHHtjeqn+DM4OIOfH/4hg5c3NIddd/84UGnjqV4Svwp8U5isWCOZ9hrprvrfWj3oSQuSVJ2BfxolJfdSQ/I2Y9SDQA/BqkYeGzn7GyM+Felzc4SG2Bb/C2qEHBdYWyGiyb5ik3YsciD0r6qxxJBZJ9tVF9ym03x40KtJu7LAMIOfnxqC+leyZwtVi0l+HJcBOQVDfy6Ur1yw6TIJ/nvribjt2Su8tuqelb/9SExrd8RGxiuADGJlvGup9KBeybTue9BEmITFkWVmtI2zVgGo3a9brmLDnHM4RKMDk2rJ5eMMek6p8njGZu9qMcwEFBGNYFIPsaawPQp3gKX+LcCpPWuiAylDhTvXNDiUwp9oWqbo4JqxlFooVFJm9ntzwk/Rb2H+llukDs55Rt8+Uhi/D+CKKLBWmNhtT6FoIBOyO67kjIu2YHHL84JVHfCFSGwqXmNGdLXKZ65myWm4+lmb+HUIsXkkoZan+7q1jrSW7z0H9QFqt/fkmAw/RuumJu7rOtm1cwCPYs0HpruyqZMY4SZGACM0xmf06maoPH9OTV1S2LSyG3CJmTvtyC7ils7oiO3BG454BfPHpDBC8ggzR944+d5kn7JliyAx36CwIX9HJo+NG6FkRJjwEyA/rAi+gT6mMzaObemCK+xQWB6vRKuKL4Wa8Vt3ui1aXsBYsLs+2/J/9L50UpBdzvs7/e6XHYF2EwIcq9rVwa+a2/xhtFPzrWz0+dwGiObzFgrXHJqHs+Dbybe6fiI4j/0oTgU/qWtmh3ubVK1PxVoGsu3NO0fOAw3CGFIUQLUgSz9qKYtKXgKYDpoIpUiOsXHDzGt9GT4cqVdw5uBt7W1o3d/OeCiGcAQvCAAQFcFY1EYf48g9ac2mcV2YVD9o0aA2gHWnIVWbPDO2mQ68xjr7PTqD1BA5yiCFlDv9FVrknoUz/l8/pd7OKrnRxTVP/6m0pr1CbdG+gNgyVtjhQoUZVClPEPBeZ6wl8qlmaYJB2HMRrcJL8HHq0RkDfFcm9m1npqyaawFVzgEkNhd++N9MH0hWlFoyN9F4e9Wgrv47sTjfAbAatQuBpKxCmu3dXPUplW46kT1XFKvIAgTTQ0HVtXXOYp5yC0ft9Pkz8evl/gPkbwP+EJohh/9UA80fNg//AXuccJNTgMsRDIeoABJJ/4Z6D9