Название | Магия чисел. Математическая мысль от Пифагора до наших дней |
---|---|
Автор произведения | Эрик Т. Белл |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 1946 |
isbn | 978-5-9524-5138-4 |
Некоторые математики чувствуют необходимость подчинения неизбежности. Возникает ощущение, будто их открытия и находки ожидали их в неизвестном, но вполне узнаваемом будущем. Рационалист сказал бы, что математик проектирует себя в иллюзорное время своего собственного изобретения. Будущее, в которое, как ему представляется, он проникает, на самом деле есть его собственные настоящие абстракции и доказательства – плоти и духа математики. Постоянство и универсальность математики основываются на ее абстрактности, очевидной необходимости или «обреченности» как сопутствующей строгости формальной логики.
Всеми, кто верит, что математика и логика есть плоды человеческого сознания, и необходимость и универсальность воспринимаются лишь как преходящие признаки. Сторонники теории о том, что числа были скорее найдены, чем изобретены, обнаруживают в математике бесспорное доказательство существования высшего и вечного разума, наполняющего вселенную. Первые чтут в математике гибкость и способность меняться, последние видят в математике откровение постоянства в бесконечности пространства, все несовершенство которого вносится лишь неадекватностью человеческого восприятия. По мере продвижения в направлении более ясного осознания бесконечности несовершенство пропадет, и математика засияет ярче, как безупречное олицетворение вечной истины.
Первые признаки того, что в VI веке до н. э. появление подобного учения было вполне разумно и возможно, видны на примере полудюжины простых утверждений о прямых линиях и окружностях; и, как гласят предания, Фалес некоторые из них даже доказал. Если прямая линия проходит через центр окружности, она делит окружность на две равные во всех отношениях части.
Или, например, если две стороны треугольника равны, то углы, противоположные равным сторонам, тоже равны. Эти два утверждения подтверждаются при начертании соответствующих фигур, и точно так же очевидна правота другого утверждения: если две прямые линии пересекаются, противоположные углы в точке пересечения попарно равны. Просто внимательно взглянув на чертеж, видим «истину» данного утверждения в геометрии. А если еще немного поразмышляем, то «увидим», что данные выводы не проистекают из каких-либо чисел, которые можно было бы «притянуть» к этому, но, по-видимому, сохраняют справедливость по отношению к любой окружности, любому равнобедренному треугольнику, любой паре пересекающихся прямых линий, которые