Название | An Introduction to Correspondence Analysis |
---|---|
Автор произведения | Eric J. Beh |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9781119041979 |
Table of Contents
1 Cover
5 Preface
6 1 Introduction 1.1 Data Visualisation 1.2 Correspondence Analysis in a “Nutshell” 1.3 Data Sets 1.4 Symmetrical Versus Asymmetrical Association 1.5 Notation 1.6 Formal Test of Symmetrical Association 1.7 Formal Test of Asymmetrical Association 1.8 Correspondence Analysis and R 1.9 Overview of the Book
7 Part I: Classical Analysis of Two Categorical Variables 2 Simple Correspondence Analysis 2.1 Introduction 2.2 Reducing Multi-dimensional Space 2.3 Measuring Symmetric Association 2.4 Decomposing the Pearson Residual for Nominal Variables 2.5 Constructing a Low-Dimensional Display 2.6 Practicalities of the Low-Dimensional Plot 2.7 The Biplot Display 2.8 The Case for No Visual Display 2.9 Detecting Statistically Significant Points 2.10 Approximate p-values 2.11 Final Comments 3 Non-Symmetrical Correspondence Analysis 3.1 Introduction 3.2 Quantifying Asymmetric Association 3.3 Decomposing for Nominal Variables 3.4 Constructing a Low-Dimensional Display 3.5 Practicalities of the Low-Dimensional Plot 3.6 The Biplot Display 3.7 Detecting Statistically Significant Points 3.8 Final Comments
8 Part II: Ordinal Analysis of Two Categorical Variables 4 Simple Ordinal Correspondence Analysis 4.1 Introduction 4.2 A Simple Correspondence Analysis of the Temperature Data 4.3 On the Mean and Variation of Profiles with Ordered Categories 4.4 Decomposing the Pearson Residual for Ordinal Variables 4.5 Constructing a Low-Dimensional Display 4.6 The Biplot Display 4.7 Final Comments 5 Ordered Non-symmetrical Correspondence Analysis 5.1 Introduction 5.2 The Goodman–Kruskal tau Index Revisited 5.3 Decomposing for Ordinal and Nominal Variables 5.4 Constructing a Low-Dimensional Display 5.5 The Biplot 5.6 Some Final Words
9 Part III: Analysis of Multiple Categorical Variables 6 Multiple Correspondence Analysis 6.1 Introduction 6.2 Crisp Coding and the Indicator Matrix 6.3 The Burt Matrix 6.4 Stacking 6.5 Final Comments 7 Multi-way Correspondence Analysis 7.1 An Introduction 7.2 Pearson’s Residual and the Partition of 7.3 Symmetric Multi-way Correspondence Analysis 7.4 Constructing a Low-Dimensional Display 7.5 The Marcotorchino Residual and the Partition of 7.6 Non-symmetrical Multi-way Correspondence Analysis 7.7 Constructing a Low-Dimensional Display 7.8 Final Comments
10