Самые знаменитые ученые России. Геннадий Прашкевич

Читать онлайн.
Название Самые знаменитые ученые России
Автор произведения Геннадий Прашкевич
Жанр Энциклопедии
Серия
Издательство Энциклопедии
Год выпуска 0
isbn



Скачать книгу

по теории чисел, алгебре, геометрии, теории вероятностей, баллистики. Им была решена важная задача о распространении волн на поверхности жидкости, заключенной в бассейне, имеющем форму круглого цилиндра. Оценивая работы Остроградского, известный механик и математик Н. Е. Жуковский писал, что «…они захватывают собою почти всю область, на разрешении которой сосредотачивались в то время мысли выдающихся европейских геометров. В тот период расцвета прикладных наук, когда прогресс математических знаний дал сразу возможность разрешить целый ряд существенных вопросов естествознания, мы часто встречаемся с однородными работами выдающихся мыслителей. Нам, русским, отрадно отметить теперь, что в это время деятельности Фурье, Коши, Пуассона, Якоби и Гаусса мы не остались в стороне, так как имели Остроградского».

      В работах по теории распространения тепла в твердых телах и в жидкостях Остроградский получил дифференциальные уравнения распространения тепла и одновременно пришел к ряду важнейших результатов в области математического анализа: нашел формулу преобразования интеграла по объему в интеграл по поверхности (так называемая формула Остроградского-Гаусса). Он ввел понятие сопряженного дифференциального оператора, доказал ортогональность собственных функций данного оператора и сопряженного, установил принцип разложимости функций в ряд по собственным функциям и принцип локализации для тригонометрических рядов. Стоит отметить, что теория распространения тепла в жидкости впервые была построена именно Остроградским, так как предыдущие исследования французских математиков Ж. Фурье и С. Пуассона были основаны ими на ошибочных предпосылках. Занимался Остроградский также вопросами упругости, небесной механики, теории магнетизма.

      Установленная Остроградским в 1828 году формула преобразования интеграла по объему в интеграл по поверхности была обобщена им в 1834 году на случай n-кратного интеграла. При помощи этой формулы он нашел вариацию кратного интеграла. В работе «О преобразовании переменных в кратных интегралах», выполненной в 1836, а опубликованной в 1838 году, он дал вывод (излагаемый теперь во всех учебниках математического анализа) правила преобразования переменных интегрирования в двойных и тройных интегралах. Один из частных результатов, полученных Остроградским в теории интегрирования рациональных функций, – выделение рациональной части интеграла (метод Остроградского) – также излагается в учебниках.

      В теоретической механике Остроградскому принадлежат фундаментальные результаты, связанные с развитием принципа возможных перемещений, вариационных принципов механики, а также с решением ряда частных задач.

      В «Мемуаре об общей теории удара» (1854) Остроградский впервые дал общий метод определения скоростей точек какой угодно системы при ударе о неупругую связь, то есть построил общую теорию удара.

      Общий вариационный принцип почти одновременно был высказан в 40-х годах XIX века для консервативных систем –