(Не)совершенная случайность. Как случай управляет нашей жизнью. Леонард Млодинов

Читать онлайн.
Название (Не)совершенная случайность. Как случай управляет нашей жизнью
Автор произведения Леонард Млодинов
Жанр Математика
Серия
Издательство Математика
Год выпуска 2008
isbn 978-5-904584-56-6



Скачать книгу

что так меньше заметна грязь. А мне что, покрасить их в розовый цвет, что ли?”». Обвинительные свидетельские показания также представили в двух версиях. Но на этот раз версию «поживее» услышала первая группа присяжных, а версию «поспокойнее» – вторая. И когда присяжных попросили вынести вердикт – соотношение виновен/невиновен, – то наибольшее количество баллов выставлялось теми, кто услышал версию «поживее». К тому же эффект только усиливался в промежутке за двое суток до вынесения вердикта (предположительно в связи с особенностями восприятия информации и ее воспроизведения с течением времени).

      Искажая наш взгляд на прошлое, тенденция оценивать вероятность по наличию примеров осложняет любые попытки разобраться. Это было справедливо для древних греков, справедливо и для нашего времени. Однако существовало и еще одно серьезное препятствие столь раннему возникновению теории случайности, препятствие исключительно практического свойства: основы теории вероятностей требовали всего лишь знания арифметики, но та форма арифметики, которая была знакома грекам, оказалась крайне неудобной для работы. К примеру, в Афинах в V в. до н. э, когда греческая цивилизация переживала свой расцвет, для записи цифр пользовались своего рода алфавитным кодом[38]. Первые девять из двадцати четырех букв древнегреческого алфавита обозначали цифры от 1 до 9. Следующие девять букв обозначали десятки: 10, 20, 30 и так далее. А последние шесть букв и еще три символа обозначали сотни: 100, 200… до 900. Если вы считаете, что математика вам не дается, представьте, каково вычесть из! К тому же единицы, десятки и сотни записывались в произвольном порядке: иногда сотни писали в начале, иногда в конце, иногда вообще не придерживались никакого порядка. Ну и в довершение всего у древних греков не было нуля!

      Нуль появился у греков, когда в 331 г. до н. э. Александр Македонский завоевал Вавилонское царство. Но даже когда александрийцы уже пользовались нулем, его все еще не рассматривали как самостоятельное число. В современной математике число 0 наделено двумя основными свойствами: при сложении с нулем число не меняется; при умножении на любое число нуль не меняется. Эти положения стали применяться только в IX в. благодаря индийскому математику Махавире.

      Но даже после перехода на удобную для использования систему счисления понадобилось не одно столетие, прежде чем люди признали сложение, вычитание, умножение и деление основополагающими математическими операциями и медленно осознали, что специальные символы облегчат выполнение этих операций. Поэтому лишь к XVI в. западный мир созрел для теории вероятностей. Несмотря на неудачную систему счисления, именно римляне, эти завоеватели греков, сделали первые шаги к пониманию случайности.

      Вообще-то римляне относились к математике с презрением, по крайней мере, к математике греков. По словам римского сенатора Цицерона, жившего с 106 по 43 гг. до н. э., «греки более всего почитали геометрию; соответственно,



<p>38</p>

Robert Kaplan, The Nothing That Is: A Natural History of Zero (London: Oxford University Press, 1999), pp. 15–17.