Евклидово окно. История геометрии от параллельных прямых до гиперпространства. Леонард Млодинов

Читать онлайн.
Название Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Автор произведения Леонард Млодинов
Жанр Математика
Серия
Издательство Математика
Год выпуска 2001
isbn 978-5-904584-60-3



Скачать книгу

«чем проще, тем лучше»: 100 % годовых[10]. Поскольку средства на кону стояли нешуточные, египтяне выработали более-менее надежные, хоть и мучительные методики расчетов площадей квадрата, прямоугольника и трапеции. Для вычисления площади круга его аппроксимировали квадратом со сторонами, равными восьми девятым диаметра. Это примерно то же самое, что 256/81 – или 3,16 – для значения числа л, т. е. завышенная его оценка – правда, всего на 0,6 %. История не сохранила свидетельств, бурчали налогоплательщики по поводу такой несправедливости или нет.

      Египтяне применяли свои математические знания с поразительным размахом. Вообразите открытую всем ветрам унылую пустыню в 2580 году до н. э. Архитектор разложил свои папирусы с планом заказанной вами постройки. У него-то работа непыльная: квадратное основание, треугольные грани, ну и да – 480 футов в высоту, из каменных глыб по две с лишним тонны каждая. Вам поручили проследить за строительством. Простите-извините, но никаких лазерных дальномеров и прочих затейливых маркшейдерских приборов нету – кое-какие палки да веревки.

      Многие домовладельцы знают: разметка земли под фундамент здания или даже периметра под простенькую террасу при помощи лишь плотницкого угольника и рулетки – задачка непростая. При постройке же такой пирамиды малейшее отклонение от правильных углов – и тысячи тонн камней тысячи человеко-лет спустя в сотнях футов над землей примут форму не строгих треугольных граней пирамиды, сходящихся в одной точке, а шаткой четырехглавой кучи. А фараоны, коим поклонялись как богам, с армиями, резавшими фаллосы убитым врагам[11] просто для точности подсчетов, – совсем не те всесильные божества, которым стоит предъявлять кособокие пирамиды. Прикладная египетская геометрия развилась в полноценный предмет.

      Чтобы строительство шло по плану, египтяне подключали специалиста, называвшегося гарпедонаптом, буквально – «натягивателем веревок». Во зиться с веревкой гарпедонапт привлекал трех рабов. На ней с определенными интервалами были завязаны узлы, и если ее туго натянуть, получался треугольник с узлами-вершинами и сторонами известной длины – и, соответственно, углами нужного раствора. Например, если натянуть веревку с узлами на 30-м, 40-м и 50-м ярдах, между сторонами в 30 и 40 ярдов получится прямой угол. (Слово «гипотенуза» по-гречески исходно означала «растянутая напротив».) Метод, как выяснилось, блестящий – и куда сложнее, чем может показаться. В наше время сказали бы, что натягиватели веревок строили не линии, а геодезические кривые вдоль поверхности Земли. Нам предстоит убедиться, что именно этим методом – хоть и не в таком умозрительном виде и не в таких малых (бесконечно малых, говоря строго) масштабах – мы и поныне пользуемся для оценки локальных свойств пространства в той области математики, что зовется «дифференциальная геометрия». Именно теоремой Пифагора мы поверяем плоскость пространства.

      Покуда египтяне обживали долину Нила, в районе Персидского залива и Палестины развивалась еще одна конурбация



<p>10</p>

Rosalie David, Handbook of Life in Ancient Egypt (New York: Facts on File, 1998), стр. 96.

<p>11</p>

Эти и другие поразительные факты можно найти благодаря вкладу Алексея в эти примечания – вот где: James Putnam and Jeremy Pemberton, Amazing Facts about Ancient Egypt (London and New York: Thames & Hudson, 1995), стр. 46.