Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим. Виктор Майер-Шенбергер

Читать онлайн.



Скачать книгу

заключаются не только в этом. Вполне вероятно, что каждый набор данных имеет внутреннюю, пока еще не раскрытую ценность, и весь мир стремится обнаружить и заполучить ее.

      Большие данные вносят коррективы в характер бизнеса, рынков и общества, о которых подробнее мы поговорим в шестой и седьмой главах. В ХХ веке особое значение придавалось не физической инфраструктуре, а нематериальным активам, не земле и заводам, а интеллектуальной собственности. Сейчас общество идет к тому, что новым источником ценности станет не мощность компьютерного оборудования, а получаемые им данные и способ их анализа. Данные становятся важным корпоративным активом, жизненно важным экономическим вкладом и основой новых бизнес-моделей. И хотя данные еще не вносятся в корпоративные балансовые отчеты, вероятно, это вопрос времени.

      Несмотря на то что технологии обработки данных появились некоторое время назад, они были доступны только агентствам по шпионажу, исследовательским лабораториям и крупнейшим мировым компаниям. Walmart[18] и CapitalOne[19] первыми использовали большие данные в розничной торговле и банковском деле, тем самым изменив их. Теперь многие из этих инструментов стали широкодоступными.

      Эти изменения в большей мере коснутся отдельных лиц, ведь в мире, где вероятность и корреляции имеют первостепенное значение, специальные знания менее важны. Узкие специалисты останутся востребованными, но им придется считаться с большими данными. Помните, как в фильме «Человек, который изменил всё»[20]: на смену бейсбольным скаутам пришли специалисты по статистике, а интуиция уступила место сложной аналитике. Нам придется пересмотреть традиционные представления об управлении, принятии решений, человеческих ресурсах и образовании.

      Большинство наших учреждений создавались исходя из предположения, что информация, используемая при принятии решений, характеризуется небольшим объемом, точностью и причинностью. Но все меняется: если данных чрезвычайно много, они быстро обрабатываются и не допускают неточности. Более того, из-за огромного объема информации решения принимают не люди, а машины. Темную сторону больших данных мы рассмотрим в восьмой главе.

      Общество накопило тысячелетний опыт понимания и регулирования поведения человека. Но что делать с алгоритмом? Еще на ранних этапах обработки данных влиятельные лица увидели угрозу конфиденциальности. С тех пор общество создало массивный свод правил для защиты конфиденциальной информации. Однако в эпоху больших данных это практически бесполезная «линия Мажино»[21]. Люди охотно делятся информацией в интернете, и эта возможность – одна из главных функций веб-служб, а не слабое место, которое нужно устранить.

      Опасность для отдельных лиц теперь представляет не угроза конфиденциальности, а вероятность: алгоритмы будут прогнозировать вероятность



<p>18</p>

Walmart – американская компания-ретейлер, управляющая крупнейшей в мире розничной сетью.

<p>19</p>

CapitalOne – американская банковская холдинговая компания, специализирующаяся на кредитах.

<p>20</p>

«Человек, который изменил всё» (Moneyball) – биографическая спортивная драма режиссера Беннетта Миллера. На русском языке издана книга: Льюис М. Moneyball. Как математика изменила самую популярную спортивную лигу в мире. М.: Манн, Иванов и Фербер, 2014.

<p>21</p>

Линия Мажино – система французских укреплений на границе с Германией.