Политические и избирательные системы. Государства Британского содружества. Том 1. Учебное пособие. Е. П. Борзова

Читать онлайн.



Скачать книгу

144–146; Гл. IV. – С. 155–159; Sartory G. Parties and party systems. A framerwork for analisis. Cambrige, 1976.

      10

      Дюверже М. Политические партии. – М., 2000.

      11

      Сенаторов А. И. Политические партии Японии. 1945–1992. – М., 1996. – С. 80–194; См.: Евдокимов В. Б. Партии в политической системе буржуазного общества. – Свердловск, 1990; См.: Селезнев Л. И. Политические системы современности. – СПб., 1995.

      12

      Бьюэл Э. Х.-мл. Архаичны, но адаптивны. О политических партиях США // Полис. – 1996. – № 3. – С. 86–91.

      13

      Согласно решению правительства от января 1976 года за рубежом страна называется Австралия, правительство – австралийским, в самой стране используется название Австралийский Союз и правительство Союза.

      14

      Страны мира сегодня: Справочник. – Т.5. – М., 2003. – С.9–10. – (5–01–9).25

      15

      Бромхед П. Эволюция британской конституции. – М., 1978. – С. 115.

      16

      «Там, где нет законов, нет и свободы», – утверждал классик английского либерализма Дж. Локк. См.: Локк Дж. Соч. – М., 1988. – Т. З. – С. 293.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCACTASwDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAUGAwQHAgH/xAAaAQEAAwEBAQAAAAAAAAAAAAAAAQMEAgUG/9oADAMBAAIQAxAAAAH5ZaVKxvttF2bJNXJPHaqPux02fg5yyLXWrLWvE+lvHIuu8h9LwfrbtGmqr2fY28G/V27RF0sXKp2C9Lzwv5AAAPXkAAAA+e+osWiqykt6z3wdk8Yab5avyXq3HF1qZhs3u3mpzexf5MJtyebi/fi8mpZipUD1Rp55Y6Fz3TUFtYACy1q51TO816pzGqdMauQAALJ9szwfpayswrKzCsrMKykY7nQTe3NFZWZMVlZhWVmFSgb5Q/S8kNmAABmwj15AA2tWASA3GS90TUL3NVvHos9YivFOvYkKNt6s1rrVlrXn+3evvjkO7we5VauXvia9huVVq11DDbdPblrmrmw68oSepG8VTzRKxVkBIBZa1K8T1HmV157mnTGzkDuNbonrzd1k8VyNtiTjDZiT8BtRPQK1p6nmex0/kNggNvlhoqsl84+ontdVrmzl1Z6jMQ+rgL88107jOSiZuvevNoOoEnCMWasxIdQAAAAAAJ/mYAdQAAAAAAAA3dJCahQCQAAAAC0Vfe4meu0nkwdc4hum8a0R8GrkAAAAAAAAAAAAAADNdKK4ntW/TobD1bqft0e+A1cgAAAAAJKNv9Uxda7PyGudAaeQAAAAAAM2ENjXAAAAAAABu6QmoU5B0AAA+DkAAAAAAAAAAAAAAAAAB//EACgQAAICAgEBCAMBAQAAAAAAAAMEAgUAARQVEBESIDAzNUAGE1AxYP/aAAgBAQABBQKB2kZL2YS4woBuLdAUeShKEuyl+Vufcyv+M7QLGZlCtWU1N0k9AqiTywXGvU/TXuZ6jpZdyMGGkZL2YTYwoBuLdAWGThIcqX5W59zK/wCMwCpmZQrVVMk6SWl6ok8CsJeLdusrjlqw36W47j6epbjte6n3cdZvUGGkZL2gTYdQDcF6baljc+5ldrvrR1yqmSdITQKohMCsFeLdwsrjdsy16aCQbEbtSEuF2PZfQ5ddnLrc5dbkXa+MpWSc9cyvzVorrXVVssWRszxJ8AFOahvcbBGG+qrZ1RXecutzl1ucutx9hGaPoVD8uUxYw2qwxyJ/aN7PoDLMWaluPpdGlnRpZ0aWdGlnRpZ0aWdGlnRpY2ptSWLVu2QdGlnRpZ0aWdGlnRpZ0aWdGljtZsCfq7BLS3l5bOctnFo2Le1KyQsIWAosW+CG61tRheLdz7mVu+6tUs1nMMHRoMJNjwdiTUZqkPhDOhny2ckyecfJ4d+Hz049mPKvVmtZ+PTXkWRYb2pQhDkpiXGxb5Bdlzc2kUsasGHN0vytz7mV/wAZil0yvilms5h1AsYesMHfM8cCVQj4URAz7UYAMaNL3VzwgLl8ybJhn1dCIyZlgvllMYBsW+RXZb3NpFHbT7DfbS/K3PuZX/Gdql0yvilos3h1AsaPWGDtlshE+1N6CeacFsj7sGJ+rN4xZDfIKTL7DXlXYmqc9mdnfKngrhoIfJ/mAuHAQ687jFkZmHbGXhlss5GlLcpeRVAzmPU5Fv4qhorsPP8AOh9BpH9Nb/DrVVXxkoWBleV/fXr/AI+WeWHHGX+Cpo/JHuWx4/tjSe9bjv8AgD3CM1bxcOlG4Ohx21CiVu2Xa+gNBg4G6gviKP8ASX6CB4V1MreF05+QaHPX0KWCoJtSHFdsQRF+hMsyaz909g+gqfjGhZG43/K//8QAKxEAAQMCBAQGAwEAAAAAAAAAAQACAwQREBQhUhIgMTMTMDJQUXEiJEBi/9oACAEDAQE/AfFgn7gsVLRvaLjUK2FF2Gqp7rvtNY55s1No2xjinKdWcI4YRYJzi43PlZWXaom1MXpBUgMo/KPVZaXaqRpbCAVJA4yklpsi+Vo4YmWToJ3akFZWbanxuZo4cgR5c7BuWeg3LPQblnYPlMeHjianVkLTYlZ2D5Weg3LPQblXyskeCzy4qd8npC8OCDuG5UtUZNALBUXYaqjuu+1FOY+i/Xn/AMlTUskXXpjblOMTqdgu7UqWte/QaDGmroo4w0qZ4e8uGF1FVvj6dFUSMkN2i2F/YD/FdHyAj7X/AP/EACQRAAICAQQCAgMBAAAAAAAAAAECAAMRBBIhMRAwIDITQEEU/9oACAECAQE/AWqsrld5WJqAe5Z9DH+00fUe5U7j6pm4WCsseZRWUHPq/wBYljVvBx/YLcDGY3cWwhcAzAPZgZRF1KL0JVb+QZ+F2dvE0+7+/HY02NNjTY06mwzY02NNjTRDCn5gg+XdFll0Ad/rBptq5aP9pRXvEsoI7is6SvUVt3Bj+eHuCnEU5GfNgJXiUK27nydPaZXowOWgUDqOMqRG0lhM09TJ34ehW6jaRjNPWyLhvFlO45irtHgkDkxWDdegsB6iM8RVC8D52fWNYx7lLFzkn9F6w3c/ETnEpqUjPotcqOJRYW4PpxMY9BGYFA6/Y//EAD0QAAEDAgEHCAcIAgMAAAAAAAEAAgMREhMEITEzQVGSECAiIzBSYXEyNEBCU4GTFFBiY3KCkbEkoUNgwf/aAAgBAQAGPwK1wNNztCo84bvFUlZXxV2TnEb3dqte0tcNh5Yvn/Sh8jyDyPMthjLldlkt7/hsWDk7MNmxrBnVZjaN21TiNtM3smHlbMaP/auyOUV+G5WurTuuVHdB/iqSsDvFXZM7EHdOlWvaWncVD8/6UPkeQfPkthjLldlkl7/hsWFkzMJmxrNKumNo3bVSNtFS7Efuai0myM+6OyFRpFR2dWkg+Cw8rYJmb9quyOYV+G5WurTuuVHdW7cV1jA7cVHNHJdGK5jpGZQ+R5GjzV2WS4j/AIbFhZOwRM7rNKumNg3bV0GgeKIDsR/daiLsNndb2bmXYUzNozghRyPkLWxMo6g0hOwgQzZXsdU36a1TPprVM+mrmxtB3iNUdn82r0BwKgJp+laXfwozGdFeRsbybh4Ktgr+hVaKeTFpP8LSeFapn01qm/TWqb9NStijaH0zdDsY8mZBExjtJANVO/JnMe6L0g5X4UcZ/B7W7sXWGlwoUaGlRQ9lrxwrXjhWvHCteOFa8cK144V6wOFesDhTAX3XeHI2XFtrstWvHCteOFesDhWvHCteOFa8cK144VLJjVoNFvbMn91zi3nesS8ZXrEvGV1UkxG+80QdPlMsrt15ornuACpAP3FX4j2t7xNEyBk0k8jveuzDMofI8jT5oBrrX90qhLh4tNFWOaR7f1Z0YsoBe3bscrshy2U/lvkNQrJJZ2u3FxXrEvGVa6aQg7C7ml1Mw7AxPgEkDvSJGj5puTmLqmmoFUQYcFg9BtNnN6qMkd7Yg6c4rt2xZy1jAqQD9xWI8m3vv0Lq/wDJl3+6F1j+h3BoUPz/AKUPkeQfPkpIcVn4tKAa+1/cdpXTbn37VfES8DdpWDlcQmaM2f0gi7IZQfy3aVZIwtduPMwZ6tv0PB0J+TF4uL7g6iwYX4lvpP8A/OfExsz2x3iormUsAzZqMfvKLJpZHZ9DjzekQ1oVIB+4rEeaN779C6v/ACZht2BdY/o90aOWH5/0ofI8g+fMtecVm5yo19r+47Sum3PvV8RvA3aVJDM0OpoJ0jmVGSsfJ3yU2G8CctutT2yZKwStzXtd21zzcfFXBkZP4mrrH9HujMOa2aOlw3ppktzbgtn8LCZZb+nnWB4cPxCq/wCPhRbIyLzDc/MDhpBqsW431rVFxNSc55pwrTTSLs6e9hGC0ek533K2Vzbrc4HimF8dJWnSNFPYcmntNXVvr/r7kMLrmTNGZwOlNpSSMuANMxonQtFSB0aqs8gYNwzlYGTNFrNMlal33Ex2TtLpAahAvba7aOR/2YVkVCKH7hrIwvbuBorfsmG38vOsWMODa06XII5GyEkV6IRDsir+K6h9gxYm3jaAc4WTjJ463R5/PxTo7mut2t9hbJMfSJLRvRfPqn7B7qyedhrcKV8PYQftV00gpYE7EkMbdFw2LqZxK3f7C0PdUMFG+HIIiatBqPD2HFAq8Do+anhkJkbKNuw/9W//xAArEAEAAQIEBAYDAQEBAAAAAAABEQAhMUFRYXGB0fAQIDBAobGRwfFQYOH/2gAIAQEAAT8hNkaK7g1B7RwvOoztIsnOpPfi3/qmeMAYTx+H91do28Lu9u+SfjzQscXKtmBb7oZuwFT/AA8uqC5ZlzbntBJcKcp+63NyylBSMtQ5NRD7WF4NbPIMTg1Ok4IetJAHEIa+N99dp28Pj/d8JuDNyOdGmj6wRcAF1LmyjKqIHU5tHJ0N/wDLQ4nNZu5+kU2DjB6e96lDUC92VY9fii/3u453zqxRxJyai33S3JqLHJZxODWMmTNEc67Tt4MJihPy0MBDhc9fijOHAErnTc9LuJ88qgWurGgtwz7ad2Cu+b6c2QixuSa86sPTsO00zpkldqljf0f4qv4XpX8L0oMB4QEq9k6S+HwwIsBT+9pcSGUkaeBK0kxupcSK656uB9YK/v6TIqOI0gw/F6V/D9K/h+lKoFwJmZ+jKHLpRqtYAu0on7ot9EUHlPomB7L4P79GRT5Yxir+8EZmnpd1613XrXdetd1613XrXdetdh612HrRJYlyRHgFCJ5kX413XrXdetdh613XrXdetd1613XrT9BmwJvx9bG5wgkd8qhicvNJ3Z+6iefGA50mPdEfmkIlmtYndcirwRi0cipbLTNnK7Tt4WrmJ/LREml7bh81sSqUfipPTOUOtKANoKXMo9zqgXKYDWTV3Z+6SYvko+UUCmBdJ9AikppO0ZKIFYFF+MznUgo4stE7zHlicxhVhzpqEeTyz50BiGAwDYrE7vpUPDFgA2qQADnxLd2phKStZHLOvjffXadvD4/3fB0bnis50YEuZHJryo23pNhzrEyAbDRIkBZyY/O9GruM8C/eNKhbJjyD7wjHPDesAHb+E/NT9LEa/DzvtQAyC3tVgPKX27VBCFzUHh5RyOWrE7/kUicBKsA6VEDqGNPeFKw2m2PH43312nbw+P8Ad8kDuEucGgyUbPQ8qsr0GyVJlcTYaUEggw8+Q4I2RUnDSnwJh8MJpUaMxiffrRR0NKLMkUvC6LJy8uNA4hJcip4KULONbNQCxzjq8oqEYTMqBswGEK3uzjSoi6Qc/IkchCaeOTZ4zUiJyOb5S3fYQHFFJqCMIV0jj/ioFVqY2TtUMTRPdpjX2Kkg8mScEcn/ABATXNknqbVMpaLTMxUd4vGKjo3GHkOnzRnQuYHQ/wAK0yMNtaDUpYZh8IhoecZxvShwYj/gnO2LaX8PRLjMVetSABtwfCC+3AkSmbtUWZyf1T2ER86YE6lBhsJ4Yrv5H4qdGqHAn2InLC4zwKuO2HK5RRlJwDZxH37EgDLUGfNtSq7JY1IUzvZCcfYtogbR4NgZlzuMexxaltFaXlNEscCr6nDb/lv/2gAMAwEAAgADAAAAEJxjnqhiDqgwwwwywwww48du63wJ8Agww1VAwww5TTTQTyTTQQww0Ywxww//AJqSpVfbQMMkkMMDcMN9iFStkMcSgN2AMcoMMMMMMMIMMMMMMMMNOEMMMMMMBV4MMMMMMMMMMMMMMMMBAIMMMMMMNrwMMMMMMMMEEMMMMMMNEMMMMP8A/wD/AP8A/wD/AP8A/wD/AP8A/wD/AP8A/wD/AP/EACcRAQACAAMHBQEBAAAAAAAAAAEAESEx8BAwUWGBsdEgQEFxkaHB/9oACAEDAQE/ED95mXXXWddcRZDOdx3Z/Y7ysFsCUeRnC+5Xyy4Fu65r8jV/UrCXhTjPFRszfkKekvvFvrOX3L6zxq2IWT9MU+X5GbA8/RmlPTqD4mgPiaA+Jqj4gdLGJcaYZPiao+JoD4mgPiOxYH+7oFjdXc/iZvkZl110mFDgBO47sdfc7x7InBLlac1+TFhfEZbS0cNpnEVtxJ8LIhXTCLecM5YXZy5zKMVdgiYWr4HEgnLsTnsKRb2BcStwG7W/WZwCCsvYjU5onLcC2CvZ3fuP/8QAIREBAQEAAQUBAAMBAAAAAAAAAQARIRAgMUFhMEBRgaH/2gAIAQIBAT8Q+6SmDnxuD4sxQ/q8l5P8iuU/jhe7GYnaHfHauYlyQY3JxwkQcGYtLiS20btNc+ITIJB67EdVJfTt+F8L4XwkVjCmhfC+F8JBP99iCYwB08J14dNbX4TOC1m1LyQ+fMy8G/0ldOS4043FvRskOTqwIHX/AF18ZhMa6xODJyPcsTIFKm3KcGQmSbz0HJHgd