Название | Для юных математиков. Веселые задачи |
---|---|
Автор произведения | Яков Перельман |
Жанр | Учебная литература |
Серия | |
Издательство | Учебная литература |
Год выпуска | 1916 |
isbn | 5-9650-0040-5 |
Вынимая жребий, осужденный поступил так: он вынул одну бумажку из ящика и, никому не показывая, разорвал се. Судьи, желая установить, что было написано на уничтоженной бумажке, должны были извлечь из ящика оставшуюся бумажку: на ней была надпись «С м е р т ь». Следовательно, – рассуждали судьи, – на разорванной бумажке была надпись «Ж и з н ь» (они ведь ничего не знали о заговоре). Готовя невинно осужденному верную гибель, враги обеспечили ему спасение.
Приговор был таков: учителю в иске отказать, но предоставить ему право вторично возбудить дело на новом основании – именно на том, что ученик выиграл свою первую тяжбу. Эта вторая тяжба должна быть решена уже бесспорно в пользу учителя.
Солдаты сели… друг к другу на колени! Выстроились по кругу и каждый сел на колени своего соседа. Вы думаете, что последнему солдату пришлось все-таки сидеть на болоте? Ничуть: при круговом расположении вовсе и нет этого «последнего» солдата: каждый опирается на колени своего соседа, и кольцо сидящих замыкается.
Если это представляется нам сомнительным, попробуйте с несколькими десятками товарищей устроить такое кольцо сидящих. Вы сможете на деле убедиться, что изобретательный солдат нашел действительный, а не кажущийся выход из положения.
Пришлось сделать 6 следующих поездок:
1-я поездка. Оба мальчики подъезжают к противоположному берегу и один из них привозит лодку к разведчикам (другой остается на том берегу).
2-я поездка. Мальчик, привезший лодку, остается на этом берегу, а в челнок садится первый солдат, который и переправляется на противоположный берег. Челнок возвращается с другим мальчиком.
3-я поездка. Оба мальчика переправляются через реку, и один из них возвращается с челноком.
4-я поездка. Второй солдат переправляется на противоположный берег. Челнок возвращается с мальчиком.
5-я поездка – повторение 3-й.
6-я поездка. Третий солдат переправляется на противоположный берег. Челнок возвращается с мальчиком, и дети продолжают свое прерванное катание по реке.
Теперь все три солдата находятся на другом берегу.
Нелепый результат, который мы получили, исчисляя своих предков, объясняется тем, что нами упущено из виду одно весьма простое обстоятельство. Мы не приняли в расчет, что наши отдаленные предки могут быть в кровном родстве между собой и, следовательно, иметь общих предков. Мой отец и моя мать, может, уже в 5-м или 6-м поколении назад имели общего деда, который, возможно, был и вашим предком, читатель. Это соображение разбивает все наши расчеты и уменьшает несметные полчища наших отдаленных предков до весьма скромной цифры, при которой не может быть речи о тесноте.
Младший брат, пойдя назад по движению, увидел идущий навстречу вагон и вскочил в него. Когда этот вагон дошел до места, где ожидал старший брат, последний вскочил в него. Немного спустя тот же вагон догнал шедшего впереди среднего