Название | Математика управления капиталом: Методы анализа риска для трейдеров и портфельных менеджеров |
---|---|
Автор произведения | Ральф Винс |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 2011 |
isbn | 978-5-9614-2393-8 |
МО = (–0,0526 * 1) + (–0,0526 * 10) + (–0,0526 * 5) = –0,0526 – 0,526 – 0,263 = –0,8416.
Таким образом, следует ожидать проигрыш 84,16 цента.
Этот принцип объясняет, почему системы, в которых пытаются изменить размер ставок в зависимости от того, сколько проигрышей или выигрышей было (допуская процесс независимых испытаний), считаются проигрышными. Сумма отрицательных ожиданий по ставкам всегда является отрицательным ожиданием!
В отношении управления капиталом очень важно понимать, что при игре с отрицательным ожиданием нет схемы управления деньгами, которая может сделать вас победителем. Если вы продолжаете играть, то независимо от способа управления деньгами вы проиграете весь ваш счет, каким бы большим он ни был в начале.
Эта аксиома верна не только для игры с отрицательным ожиданием, она истинна также для игры с равными шансами. Поэтому единственный случай, когда у вас есть шанс выиграть в долгосрочной перспективе, – это игра с положительным математическим ожиданием. Кроме того, вы можете выиграть только в двух случаях. Во-первых, при использовании ставки одинакового размера, во-вторых, используя ставки при f, меньшем значения f, соответствующего точке, в которой среднее геометрическое HPR становится равным или меньшим 1.
Эта аксиома истинна только при отсутствии верхнего поглощающего барьера. Например, азартный игрок, который начинает со 100 долл., прекращает играть, если его счет вырастает до 101 долл. Эта верхняя цель (101 долл.) называется поглощающим барьером. Допустим, игрок всегда ставит 1 долл. на красный цвет рулетки. Таким образом, у него небольшое отрицательное математическое ожидание. У игрока больше шансов увидеть, как его счет вырастет до 101 долл., и он должен будет прекратить играть, чем увидеть, как его счет уменьшится до нуля и он будет вынужден прекратить играть. Если он будет повторять этот процесс снова и снова, то окажется в отрицательном математическом ожидании. Если сыграть в такую игру только раз, то аксиома неизбежного банкротства, конечно же, неприменима. Различие между отрицательным и положительным ожиданием – это различие между жизнью и смертью. Не имеет значения, насколько положительное или насколько отрицательное ожидание; важно лишь то, положительное оно или отрицательное. Поэтому до рассмотрения вопросов управления капиталом вы должны найти игру с положительным ожиданием.
Если у вас такой игры нет, тогда никакое управление деньгами в мире не спасет вас[2]. С другой стороны, если у вас есть положительное ожидание, то можно посредством правильного управления деньгами превратить его в функцию экспоненциального роста. Не имеет значения, насколько мало это положительное ожидание! Другими словами, не имеет значения, насколько прибыльна торговая система на основе 1 контракта. Если у вас есть система, которая выигрывает 10 долл. на контракт в одной сделке (после вычета комиссионных и проскальзывания), можно использовать методы управления капиталом таким образом, чтобы сделать ее более прибыльной,
2
Это правило применимо к торговле только в одной рыночной системе. Когда вы начинаете торговать более чем в одной рыночной системе, то вступаете в иную среду. Например, можно включить рыночную систему с отрицательным математическим ожиданием для одного из рынков и в действительности получить более высокое математическое ожидание, чем просто математическое ожидание группы до включения системы с отрицательным ожиданием! Более того, возможно, что математическое ожидание для группы с включением рыночной системы с отрицательным математическим ожиданием будет выше, чем математическое ожидание любой отдельной рыночной системы! В настоящее время мы рассматриваем только одну рыночную систему, и для того, чтобы методы управления деньгами работали, необходимо иметь положительное математическое ожидание.